Пес Ебленский - Алгебры Меры [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Алгебры Меры [Oct. 28th, 2022|09:00 pm]
Previous Entry Add to Memories Tell A Friend Next Entry
[Tags|, , , , , , , ]
[Current Mood | sleepy]
[Current Music |David Bowie - Hanky Dory]

Продолжаю чудовищно медленно изучать Фремлина.

Алгебры меры это такой безточечный, в смысле point-free и point-less, аналог пространств с мерой. То есть это структура, которая просто состоит из некоторой сигма-полной по Дедекинду булевой алгебры (для краткости далее просто сигма-алгебра) и сигма-аддитивная неотрицательная функция на этой алгебре, которая может принимать и бесконечные значения, то есть мера. Их особенность заключается в том, что все элементы меры ноль это только ноль. В отечественной литературе их обычно называют нормированными алгебрами. Но на мой взгляд, такое обозначение может вносить путаницу, ведь как раз нормы в общепринятом понимании там нет.

Если мера достигает на единице значения единица, то такую алгебру называют вероятностной Алгеброй. Интересно, что Джейнс в своей книге по Байесовской теории как раз и работают с вероятностными алгебрами. Напоминаю, что Джеймс утверждал, что его подход эквивалентен аксиоматики Колмогорова. В этом случае элементы алгебры это события, но никаких элементарных событий, как обычно у нас учат, нет. Еще пропадает концептуальная сложность с различение событий меры ноль, пустого события и невозможного события. Теперь, благодаря Фремлину, я могу видеть как эта эквивалентность устроена во всех деталях.

Чтобы получить алгебру меры, проще всего взять какое-нибудь пространство с мерой и факторизовать его сигма-алгебру по сигма-идеалу множеств меры ноль. Такая операция задает контравариантный функтор. В качестве морфизмов можно брать измеримые отображения, уважающие меру ноль, или измеримые отображения, сохраняющие меру вообще. Есть и контравариантный функтор в другую сторону. Он сопоставляет алгебре меры ее пространство Стоуна с соответствующей мерой. И теперь становится понятно, что предложенным выше способом можно получить любую алгебры меры вообще. Достаточно взять ее пространство Стоуна. Но обратное не верно, потому что пространства Стоуна имеют строго определённую структуру.

Удивительно, но мера задает топологию алгебры! Если мера конечная, то ее действие на суммы (в булевых алгебрах тоже самое что разницы) задает метрику на алгебре. Отсюда, наверное, и ассоциация меры с нормой. А в случае бесконечной меры топологию задает семейство полуметрик, получаемых из "сужения" меры на конечные элементы. То есть тут у нас на одном множестве есть и структура кольца, и решетки по порядку, и мера, и топология (а в случае вероятностных алгебр еще и метрическая геометрия)! И все это взаимосвязано и еще друг-с-другом все время взаимодействует! Вот, например, соответствие между свойствами меры и топологическими свойствам: мера полуконечна ~ топология Хаусдорффова, мера сигма-конечна ~ топология метризуема, мера локализуема ~ топология хаусдорффова и полна (в смысле равномерности). То, что Фремлин активно пользуется понятием равномерности (uniformity), что шире применять понятия метрической топологии Бурбакам. И действительно я бы описал его стиль как вполне бурбакистский, а его труд как достойную замену книги Бурбаков про интеграл. Кстати, топология, алгебры меры тут становятся топологическими алгебрами. И вся машинерия для топологических групп и алгебр тут работает! Поэтому, например естественными подобъектами алгебр мер становятся замкнутые подалгебры. В контексте вероятностных алгебр они один-к-одному соотносятся с условными распределениями.

Из контравариантности описанных выше функторов можно понять, что произведение алгебр меры соответствует несвязному объединению. С произведением вероятностным пространств все сложнее. Там получается, что-то вроде пополнения тензорного произведения. Но я буду его все равно обозначать просто как тензорное произведение, потому что мне неохота использовать более сложную символику. Эта конструкция соответствует копроизведению, но универсальным свойством обладает только для достаточно хороших мер, хотя бы полуконечных. Но все таки давайте называть ее лучше копроизведением, а не свободным произведением как в литературе. Так вот бесконечное копроизведение возможно только для вероятностных алгебр. И в этом случае оно соответствует ансамблю независимых случайных величин. Отсюда идея, что алгебры случайных процессов можно тоже реализовывать на таких бесконечных тензорных произведения. Тут намечаются какие-то фантазмы для взаимодействия с квантовой механикой, где для обозначения взаимодействия случайных величин тоже используются тензорные произведения но уже в совсем других пространствах. Еще отсюда становится видна сущность Теоремы Колмогоровы об условиях существования случайного процесса как теоремы про пополнение тензорного произведения. Кстати, в абстрактной теории категорий есть похожее произведение Колмогорова. Может отсюда это наименование и пошло.

Как и с измеримыми пространствами на булевых алгебрах можно строить векторное пространство аддитивных функциональнов. Тут отражаются почти все результаты для измеримых пространств. Тут снова есть ограниченные и счетно-аддитивные функционалы и разложения Жордана и Ханна. Но тут появляются еще так называемые полностью аддитивные функционалы. Их можно суммировать по неограниченно большому множеству и получать значение функционал его супремума. Причем, в контексте алгебр меры любой непрерывной в нуле аддитивный функционал будет полностью аддитивным! Он же будет равномерно непрерывным. Также полностью аддитивным будут и все абсолютно непрерывные функционалы по мере. Круто, что в случае вероятностной алгебры все эти понятия вообще эквиваленты! В этом контексте теорема Радона-Никодима превращается в утверждение про эквивалентность между функторами L^1 (а его надо воспринимать именно как функтор) и функтором абсолютно аддитивных функционалов на соответствующей алгебре меры. Тут есть некоторые технические детали, которые надо уточнять.

Если на множестве индексов некоторого набора вероятностных алгебр задан ультрафильтр, то можно построить так называемое усеченное произведение. Мне кажется, что интуитивно его можно представлять себе так. Есть куча разных датчиков случайных чисел без какого-то общего распределения, и мы каждый раз выбираем каким будем пользоваться в соответствии с принципом, который задает ультрафильтр. То есть про ультрафильтр тут можно думать как про принцип выбора из бесконечного множества без определенного выбора или с ним. То есть ультрафильтр это персик в отсутствии персика или в присутствии персика. И в контексте теории вероятности, если мое виденье верно, есть какая-то загадочная связь между ультрафильтрами на множестве индексов семейства вероятностных алгебр и вероятностными распределениями на них. Потому что можно когда мы выбираем датчик случайных чисел запоминать только его индекс, а само случайное число выбрасывать. Но это не так правильно, так как мы строим вероятностную алгебру и перейти обратно к вероятностному пространству не так просто. Но кажется, что при подходе Джейнса таких сложностей не возникает. Но он физик, а не математик, и может позволить себе упускать формальности. А вообще усеченные произведения нужны для того, чтобы строить индуктивные пределы в категории вероятностных алгебр и еще всякие абстрактные конструкции. Для простых алгебр мер понятно, что никаких пределов часто нет.

Для чего нужны алгебры меры? Вообще в контексте многих сложных вопросов теории меры и вероятностей работать с алгебрами просто проще чем с пространствами. Сразу убирается вся лишняя информация. Тут тебе и метрика, и непрерывные отображения, и все функционалы сразу полностью аддитивны и конструкции типа индуктивных пределов. Но особо интересно использование алгебр мер в абстрактной негладкой эргодической теории. И я надеюсь когда-нибудь про это тут рассказать. Еще много используется во всякой современной теории множеств про разные основания математики. Но про это уж точно совсем не скоро.

Сам Фремлин пишет, что в этой главе все результаты элементарные. Вообще многие из них являются просто переводом на язык алгебр результатов классической теории меры. Но в следующих главах будут уже интересные уникальные результаты. И я надеюсь рассказать вам о них уже скоро.
LinkLeave a comment

Comments:
From:(Anonymous)
Date:October 28th, 2022 - 10:40 pm
(Link)
но ты же пидор
[User Picture]
From:[info]tiphareth
Date:October 29th, 2022 - 01:18 am
(Link)
здорово!
From:(Anonymous)
Date:October 29th, 2022 - 11:54 am
(Link)
иди нахуй, говноед
From:(Anonymous)
Date:November 21st, 2022 - 12:11 am
(Link)
прив)))
From:(Anonymous)
Date:October 29th, 2022 - 11:54 am
(Link)
ебать ты додег. жри гавно!
From:(Anonymous)
Date:October 29th, 2022 - 11:59 am
(Link)
Продолжаем наблюдать за копощашимса в гомне малафейным глестой из Киева. Но я подозреваю, што этот хроническай неудачнег апять сольет, как сливал всю эту неделю.
From:(Anonymous)
Date:October 31st, 2022 - 06:02 pm
(Link)
жесть ты умён... как таким же стать?
From:(Anonymous)
Date:October 31st, 2022 - 11:12 pm
(Link)
хочу себя в попу. это грех?
[User Picture]
From:[info]rex_weblen
Date:November 2nd, 2022 - 05:48 pm
(Link)
Только если мешает делать что хочешь.
From:(Anonymous)
Date:November 20th, 2022 - 07:57 pm
(Link)
Нельзя папу в попу. А себя - можно!