Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Булево-Значные Модели и Форсинг [May. 12th, 2024|09:58 am]
[Tags|, , , , , , , , , ]
[Current Mood | anxious]




Я уже писал про эту книгу раньше примерно полгода назад. вот: https://lj.rossia.org/users/rex_weblen/195479.html


Как изменились мои планы в ее отношении за это время? Я решил почти все выкинуть из рассмотрения, кроме начал форсинга и булево-значного анализа. Причем, серьезно, "с ручкой в руках" я разбирал только эти начала форсинга, потому что про булево-значный анализ у самого Белла написано весьма неформально. Я все же хочу прочитать про форсинг тут, чтобы понять классическую идею форсинга перед тем как знакомиться с ней в контексте категорной логики. А форсинг — это вообще часть цепи того, что заставило обратить меня внимание на логику. Но особой любви к аксиоматическим основаниям математики и доказательствам независимости аксиом у меня нет. Поэтому много времени на это я решил не тратить.

Булево-значные модели это модели ZFC, которые конструируются таким стандартным образом: берется какая-то готовая модель теории множеств V и полная булева алгебра B из V, и рекрсвно cобираем части булево-значной модели. Начинаем с пустого множества. Потом берем все функции из того, что было на прошлых этапах в B и добавляем их в модель. В итоге получаем, что все множества новой модели устроены как B-значные функции от B-значных функций. И если некий элемент лежит в области определения такой функции, то принадлежность этой функции-множеству, это просто значения этой функции. Развивая эту идею, мы получаем операцию вычисления утверждений на языке теории множеств со значением B. Это похоже в некоторой степени на нечеткую логику c B-значной истинностью. Но это скорее создатели аксиоматической нечеткой логики украли тут эту идею у нормальных математиков.

При этом в новую булево-значную модель можно вложить старую. При этом там также будут смеси всех объектов с весами из B. То есть, можно взять математические объекты совершенно разной природы, например число 4 и топологическое пространство тор, и построить новый объект, который на половину будет числом 4, а на половину тором. После определенной работы получается доказать, что новая модель действительно модель теории множеств ZFC.

Форсинг начинается с того, что берется базиc P алгебры B, то есть плотное подмножество. Про P можно думать, что это кусочки информации, которые что-то сообщают нам о нашем мире. Так как такая информация не может быть противоречива в P нет 0. Можно представить себе, что каждый элемент p дает нам информацию о множестве возможных миров. И два элемента P называются несовместными, если не бывает третьего элемента информации который объединял две предыдущих элемента информации. Пример, который возникает у Белла P — это конечные бинарные последовательности, а B — это алгебра регулярных открытых множеств декартова произедения множеств {0,1}. То есть мы представляем, что мир является бесконечной бинарной последовательностью а мы получаем информацию о конечном значении нулей и единиц. А про B можно думать как про алгебру множеств возможных миров. То есть получается, что булево-значная модель — это такой мультиверсум множеств.

Я не знаю как правильно перевести форсинг на русский язык, потому буду говорить, что информация p форсит факт, если этот факт имеет место в любом мире, который допускает информация p. Коэн придумал форсинг, что доказать независимость континуум гипотезы. И я решил разобрать это доказательство, не потому что мне очень интересен сам этот результат, а то, как в доказательстве используется форсинг. Само доказательство строятся на том, что строятся две булево-значные модели типа тех, что описаны выше, но одна из них счетная, а другая нет. И в первой гипотеза континуума выполняется, а во второй нет. И форсинг обычно используется так, что когда требуется доказать, что какой-то факт никогда не выполняется, то предполагается обратное, то есть, что этот факт иногда выполняется. Тогда существует информация p, которая форсит этот факт. И эту информацию можно дополнить так, чтобы прийти к противоречию.

Меня теперь интересует вопрос насколько форсинг связан с семантикой возможных миров Саула Крипке. Но чтобы найти на него ответ следует проводить дальнейшее исследования.

Намного в большей степени чем доказательства независимости в теории множеств мое воображение взволновал булево-значный анализ. Идея в том, что действительные числа в булево-значных моделях, например, определенные как сечение Дедикинда, могут соответствовать каким-то "большим" коммутативным алгебрам над действительными числами. Например, если взять алгебру меру, то действительные числа будут эквиваленты измеримым функциям факторизованными по отношению "равно почти наверное". Можно узнать тут случайные величины. И идею булево-значного анализа в том, что все теоремы доказанные для действительных чисел можно перенести на алгебру случайных величин, конечно с некоторыми механическими модификациями. В это, собственно ничего удивительного нет, так как случайные величнины — это величины.

А вот другой пример более интересный. В (комплексном) гильбертовом пространстве можно рассмотреть алгебру замкнутых линейных подпространств. Это будет ортомодулярная решетка. Каждому подпространство соответствует единственный проектор, и алгебра порождаемая коммутирующими проекторами будет полной булевой. И соответствующая булева алгебра в качества действительных чисел будет иметь какую-то алгебру коммутирующий самосопряженных операторов. Интересно тут то, что такие операторы соотваетствуют измерениям в квантовой механике. А то, что они коммутируют означает, что измерения могут быть произведены совместно. Это достаточно логично, потому что измерения — это числа. Давис использует эту теорию для того, чтобы разрешить парадоксы Эйнштейна-Подольского-Розена и паражокс эксперемента с двумя шелями. Например ситуация с одно и двумя открытыми щелями соответствует разным булево-значным моделям, поэтому парадокса тут нет. Вот такое вот приложение логики к физике.

Не знаю исчерпан ли ныне потенциал булево-значного анализа. Более подробно про это есть две книжки авторов Кусраев и Кутуладзе.
Link157 comments|Leave a comment

математические планы затягивают(ся) [Jul. 10th, 2023|08:07 pm]
[Tags|, , , , , , ]
[Current Mood | geeky]
[Current Music |Throbbing Gristle • D.O.A. the Third and Final Report of Throbbing Gristle • 1978]

Сейчас я разбираю книгу Set Theory: Boolean Valued Models and Independence Proofs Джона Лэйна Белла. Вот причины почему я это делаю:

1) Мне нужно познакомиться с форсингом. А эту книгу рекомендовали как сжатую и продвинутую. И после моего знакомства с булевыми алгебрами на более глубоком уровне в прошлом году их активное использования для меня скорее плюс, а не минус. В целом этот же материал (основы) изложен в, как мне кажется, более дружелюбной форме у Манина. Но есть еще четыре причины сосредоточиться на книге Белла.

2) Независимость аксиомы выбора тут дается через доказательство Йошиндо Сузуки, которое использует действие группы автоморфизмов булевой алгебры на теорию множеств. Я думаю, это довольно крутой алгебраический подход сам по себе. Возможно, Манину бы такое понравилось.

3) Аксиомы Мартина. В одной из формулировок, это что-то вроде обобщения леммы Сикорского-Раисовы, где счетность меняется на произвольную кардинальность к. Дело в том, что когда я изучал логику первого порядка, у меня появилась идея, что так лемма Сикорского-Раисовы доказывает только счетную компактность логики первого порядка, то из общей компактности логики первого порядка можно доказать альтернативную формулировку леммы Сикорского-Раисовы, где условие на кардинальность меняется на структурное условие, выражаемое через действие группы автоморфизмов булевой алгебры. И я подумал, что если прочитать главы в середине этой книге, то в голове на этот счет появиться какая-то ясность.

4) Булево-значный анализ. Оказывается, что если взять в качестве булевой алгебры для булево-значной модели алгебру меры , то действительные числа в булево-значной модели становятся устроены (в определенном смысле) эквивалентно борелевским измеримым функциям на R. И при этом из логики получается сразу перенести много теорем действительного анализа с R на измеримые функции. Это называется трансфер принципом. Но он не заканчивается на действительных числах, и его можно применять ка любым формально определенным математическим объектам, и получать как-бы их больших братьев. В Новосибирске Кутуладзе И Кусраев вроде бы успешно использовали этот метод для решения задач функционального анализа и оснований квантовой механики. Но я думаю об использование этого метода в геометрии. Кажется, что "большой брат" любого геометрического объекта будет автоматически по трансфер принципу обладать в булево-злачной вселенной теми же геометрическими свойствами. То есть случайные элементы в аффинном пространстве будут "аффинным пространством", cлучайные элементы в метрическом пространстве будут "метрическим пространством", а случайные элементы на геодезических многообразиях будут "геодезическими многообразиями". Я думаю об этом отчасти в контексте задачи [info]deevrod про раздутия пространства выпуклых тел. Потому что в этом случае касательные пространства и "геодезические" существуют автоматически. Харуказа Нашимура написал давно статью Foundations of Boolean Valued Algebraic Geometry. Но она немножко по другой теме. Потому что, как я понял, там булевы алгебры конструируются из идеалов с не очень естественными операциями. И большого отклика у математического сообщества эта статья не вызвала. Сейчас, кстати, Нашимура занимается альтернативными основаниями дифференциальной геометрии.

5) Булево-значные модели это очень естественный естественный пример нетривиального булевого топоса. И книжка Белла очень удачно заканчивается на аппендиксе про топосы, где доказываются некоторые эквивалентности. Потом я решил, что Белл подходит для плавного изучения теории топосов. Кстати, теперь понятно, куда делись булево-значные модели из современной математики. Их съели топосы.

Еще, если уж переходит к топосам, я хотел бы написать про свои соображния при выборе книг по этой. Я знаком с книгами Голдблатта "Топосы: категорный анализ логики" и Лауври "Сonceptual Mathematics", но они оказались слишком простыми для меня. Поэтому я решил остановиться на книгах МакЛэйна "Пучки в геометрии и логики" и Того же Белла "Топосы и локальные теории множеств". Пока начало МакЛэйна побеждает по понятности, и я буду читать в первую очередь именно ее. Еще я пребывал смотреть Джонстона "Topos Theory", но она мне показалась слишком сложной. Зато я нашел у Джонстона еще одну интересную вещь, книгу Stone Spaces. В ней как, оказалось, довольно подробно пишут про Фреймы и Локали на топологических пространствах. И эта тема у меня давно маячит перед глазам, а где про нее читать было не понятно. Поэтому буду читать в таком порядке МакЛейн, Белл, Джонстон. Учитывая опыт с булево-значными моделями. Должен получиться интересный курс топосов с большим количеством конкретных нетривиальных примеров.

Вот мои основные источники интереса к топосам:

1) Как я убедился при чтении Логики Манина, что пучки возникают и в теории вычислений. А значит и топосы. Отсюда опять же определенная эзотерическая теория связывающая топологию и теорию вычислений. О ней я давно слышал, но только сейчас стал нащупывать что-то конкретное. Опять же у этой темы есть разные современные продолжения. Вроде дескриптивной теории множеств для вычислимых объектов или измеримых топосов.

2)Локальные теории множеств кажутся мне интуитивно самыми правильным видом оснований математики. Но формально я с ним не знакомился. И эту ситуацию исправить должен помочь Белл.

3) Опять же фреймы и локали, и разные топосологические конструкции в общей топологии давно маячат перед глазами. А теперь можно будет нормально с ними разобраться.

4) Можно-будет после этого подходить с чистым сердцем к Global Calculus Раамана, где пучки активно применяются в дифференциальной геометрии.

Проблема в том, что как я недавно заметил. Чтения булево-значных моделей идет медленно. Я подумал, почему бы не замиксовать это дело с чтением МакЛейна про Топосы? Но сейчас я заметил, что я проработал только две первые главы Белла. С другой стороны эти две первые главы занимают больше трети всей книги, поэтому результат может быть и не совсем плохой. С еще одной стороны, я там что-то уже знал и что-то пропускал. С четвертой стороны cкорее всего это дело, может быть связано не со сложностью материала а просто с обилием посторонних дел. Поэтому я не уверен, хорошая ли это идея.
Link27 comments|Leave a comment

От Логики Первого Порядка к Теории Моделей [Feb. 25th, 2023|11:56 am]
[Tags|, , , , ]
[Current Mood | distressed]
[Current Music |Element of Crime- Die Schonen Rosen]

Как и с логикой высказываний. Важнейшим результатом в логике первого порядка являются теоремы о полноте и компактности. Теорема полноты говорит, что любое утверждение истинное для любой модели неких аксиом, можно из этих аксиом доказать. А теорема компактности говорит, что утверждение всегда истинное для любой модели бесконечного множества аксиом, может быть истинно и для любой модели конечного подмножества этих аксиом. Обычно курс логики устроен так: разбирается некий вид логического вывода, потом для этого вида доказывается теорема о полноте, а потом из нее сразу следует теорема о компактности. Но сейчас популярность получило мнение, что теорема о компактности важнее. Потому что это чисто семантическое утверждение полностью независимое от методов логического вывода. И для всех интересных результатов нужна именно теорема о компактности.

Например, один из самых красивых результатов, который следует из теоремы о компактности, это теорема Акса-Гротендика. Это теорема утверждает, что любое инъективное полиномиальное отображение из С^n в С^n будет биекцией. А все дело в том, что из компактности можно вывести, что если какое-то утверждение на языке логике первого порядка и теории колец верно для бесконечного числа алгебраически замкнутых полей конечной характеристики, то они верны и для комплексных чисел. И можно показать, что такие полиномиальные функции действительно биекции в алгебраически замкнутых полях конечной характеристики. Потому что каждый полином имеет конечное число коэффициентов и любая точка, которую мы хотим получить это тоже n элементов поля, то мы можем с их помощью сгенерировать подполье, которое само будет конечным. А инъективное отображение из конечного множества в само себя всегда будет биекцией. Это очень красивый результат. И я очень рад, что решил заняться логикой, только потому что с ним познакомился.

Другой интересный результат это 0-1 закон для случайных графов. Контекст этого закона таков, что в случайном графе из n вершин ребра независимо добавляются или убираются с вероятностью 1/2. Cам закон говори, что если взять любое утверждения на языке теории графов первого порядка, и устремить n к бесконечности, то придел будет либо 0, либо 1. Рассмотрим утверждения типа для любых n вершин и любых других m вершин в графе найдется еще одна вершина x, которая смежно с первыми n вершинами, и не смежно с никакими из остальных m. Эти утверждения называются Аксиомами ресторана Алисы, потому что в ресторане у Алисы можно заказать все что угодно. С помощью элементарной комбинаторики и теории предела, можно доказать, что 0-1 закон выполняется для ресторана Алисы. Добавим аксиомы ресторана Алисы к аксиомам теории графов и получим теорию детерминированных "cлучайных" графов. Очевидно, что у этой теории не будет конечных моделей. Более того, можно доказать, что все теории детерминированных случайных графов счетные модели изоморфны. Поэтому тест Воща-Вогта говорит, что это теория полна. Благодаря компактности мы видим, что любое утверждение в теории детерминированных случайных графов можно получить из конечного числа аксиом. Поэтому можно ограничиться конечным числом аксиом ресторана Алисы и таким образом ограничить рост сумм при вычислении предела вероятностей. Вспомним про полноту, получим 0-1 закон.

Теперь нужно ответить на вопрос, как эту замечательную компактность доказывать? Есть много способов, например можно использовать полноту, понятия непротиворечивости, ультрапроизведения или алгебры Линденбаума. Мне больше всего нравятся алгебры Линденбаума, поэтому расскажу именно о них. Как я уже писал Алгебра Линденбаума для некой теории это булева алгебра, элементами которой будут классы эквивалентных формул в этой теории. При этом все большие теории будут задавать фильтры, а полные теории ультрафильтры. Можно доказать, что существует однозначное соответствие между классами изоморфных моделей этой теории и ультрафильтрами, сохраняющему кванторы. А кванторы в этой Булевой алгебре могут быть получены как инфинумы и супремумы классов соответствующих формул. Лемма Расиовы-Сикорского говорит, что для любой счетной последовательности множеств имеющих супремумы, можно расширить, сохраняющей эти супремумы. А это тоже самое, что сохранение кванторов в контексте Алгебр Линденбаума. Теперь рассмотри какой-то язык первого порядка со счетной сигнатурой, и четную теорию такую, что все его конечные подмножества имеют модель. Тогда можно определить новую Булеву алгебру где классы эквивалентности задаются отношением, можно доказать эквивалентность, используя конечное число аксиом. У нас счетное число экзистенциональных утверждений. Поэтому мы можем применить Лемму Расиовы-Сикорского и получить ультрафильтр. А из ульрафильтра можно построить модель уже для самой изначальной теории.

Тут вот, что лично мне интересно отметить. В случае логики высказываний можно было просто взять пространство Стоуна алгебры Линденбаума. При этом, для полноты замечу, что ультрафильры соответствуют элементам пространства Стоуна (положительное значение на элементе = принадлежность). Но тут все эти нюансы сидят в теореме Расиовы-Сикорского. Изначально ее доказали применяя теоремы Бэра в этом пространстве Стоуна. Поэтому у всех этих красивых результатов сверху, можно сказать, топологические корни. Вообще Белл пишет, что само понятие компактность, как пишет Белл, связана с тем, что элементарные классы, то есть классы задаваемые единичными высказываниями, задают компактную топологию на классе всех моделей. Грубо говоря, какой-то набор высказываний, противоречив если из него можно доказать все что угодно, а это тоже самое, что быть покрытием всего пространства моделей. Тогда, то что можно выбрать конечное подпокрытие говорит о том, что взять конечное противоречивое подмножество. А то можно перевести как, если каждое конечное подмножество утверждений в множестве утверждений непротиворечиво, то и все множество непротиворечиво, то есть утверждение теоремы о компактности. Причем, это элементарная топологи будет похожа на топологию пространства Стоуна, будет полностью несвязной. Но нормальным множеством с кардинальностью это пространство не будет. Вообще в теории моделей иногда вполне естественно возникают очень большие объекты. Такие объекты называются моделями-монстрами. Поэтому теории моделей тесно в нормальных основаниях математики и теории категорий.

Вообще, когда я брался за эту тему, у меня было две цели. Во первых посмотреть на применения булевых алгебр в логике. Второй целью было познакомиться с теорией моделей. Для меня это был самый загадочный раздел матлогики. Теперь мне кажется, что его правильнее было назвать семантической комбинаторикой, и тогда было бы понятно. Очень сильно углубляться в теорию моделей для себя я сейчас не вижу, потому что это сложная и запутанная дисциплину. Тем же, кто хочет с ней ознакомиться, я рекомендкую книгу Болдуина Model Theory and the Philosophy of Mathematical Practice, а не стандартные учебники. Потому что, там есть определенная систематизация основных результатов и их смысла. Еще, чтобы познакомиться с современной теорией моделей можно посмотреть презентацию того же автора

Основным понятием теории моделей является категоричность. Он не имеет отношения к теории категорий. к-категоричность означает, что у теории есть только один класс изоморфных моделей кардинальности к. Если у к-категоричной теории нет конечных моделей, и к не меньше сигнатуры языка, то она будет полна. Основной результат классической теории моделей это теорема Морли. Она говорит, что если теория к-категорична для какого-то несчетного кардинала, то она к-катигорична для любого.

Другой интересный результат, который тоже можно отнести к классической теории моделей это теоремы Лёвенхейма-Сколема. Одна из них утверждает, что у любого набора формул, у которого может быть бесконечная модель, есть модель кардинальность, которой не превышает кардинальность сигнатуры языка. Так как сигнатура теории множеств счетная отсюда следует, что существует счетная модель теории множеств. И все классические теоремы вроде Кантора-Бернштейна там выполняются (При этом все множества счетные). Изначально этот результат вызвал большой переполох, и стал известен как парадокс Сколема. Но на самом деле никакого парадокса тут нет, так как само понятие функции и кардинальности в счетной модели тоже меняется. Про этот эффект говорят, что логика первого порядка не может нормально выразить понятие кардинальности.

Так мы плавно переходим к ограничением логике первого порядка. Как мы уже на языке логике первого порядка хорошо описываются простые алгебраические и комбинаторные структуры, где все операции и предикаты применяются к однотипным элементам. Сюда относятся группы, поля и графы, например. А вот применять логику первого порядка к алгебрам Хопфа, метрическим пространствам и пространством с мерой довольно затруднительно. Вообще в элементарных курсах логики часто говорят, что логики старшего порядка не нужны, потому что все логики можно сводить к логике первого порядка добавляя дополнительные элементы и предикаты. Но с теорией моделей этот поход плохо стыкуется, потому что при таком сведении херится кардинальность. А в теории моделей, как я уже писал, кардинальность это все. Также можно упоминать нестандартный анализ и арифметику. Потому что если просто взять теорию действительных чисел или соответственно целых чисел, мы всегда будем получать нестандартные модели с бесконечно малыми и бесконечно большими. Поэтому говорят, что логика первого порядка не может адекватно закодировать нормальную школьную математику. Вообще мне теперь кажется, что нестандартный анализ намного больше интересен логикам, чем аналитикам.

Тут я показал, что логика первого порядка вполне способна решать задачи для core mathematics. Например, Акс-Гротендик и 0-1 закон для случайных графов. При этом в глубене тут лежи теорема о компактности, которая имеет псевдо-топологическую природу и компактность. И получается, что логика внезапно играет роль способа контрабандно протаскивать топологию в лог Думаю на этом мы прощаемся с логикой первого порядка и почти прощаемся с Милети. Дальше будет вычислимость, теория рекурсии и теорема Геделя о неполноте.
Link8 comments|Leave a comment

Поднятия мер [Dec. 15th, 2022|10:01 pm]
[Tags|, , , , , , , ]
[Current Mood | tired]
[Current Music |Vágtázó Halottkémek - A Halál móresre tanítása]

Продолжаю изучать Фремлина.

Из определений понятно, что если для измеримого пространства построить алгебру меры, то существует фактор-cотображение из алгебры измеримых множеств в эту алгебру. Поднятие или лифтинг в этом случае, это одностороний обратный к этому фактор-отображению морфизм булевых алгебр. Можно представить себе, что это такой селектор элемента в классе эквивалентности, который ведет себя согласовано. С этим определением есть свои нюансы, потому что можно строить поднятия сразу из алгебры измеримых множеств в алгебру измеримых множеств явно не упоминая алгебру меры. Это делает определения более нагруженным, но часто в приложениях. Нужны именно такие отображения. Еще есть понятие нижней плотности. Тот ослабляются алгебраические свойства и требуется сохранять только операцию умножения. Нижней плотностью для меры Лебега можно взять например оператор существенную внутренность множества, например.

Основным результатом этой теории является теорема Махарам-фон Неймана. Она утверждает, что у любой полной локально-детерминированной меры существует поднятие. У этой теории есть некоторая интересная связь с L^p пространствами. Если построено поднятие для меры, то можно построить положительный линейный оператор, который выбирает представителя для класса в L^p. Это достигается через "поднятие" индикаторов измеримых множеств с конечной мерой. Для случая L^\infty это оператор будет еще и изометрией, и сохранять умножение.

Интересной темой является взаимодействие групп и мер. Можно говорить о инвариантном (правильнее, наверное, говорить ковариантном, но так не говорят) к сдвигу поднятиях, если при умножение на сохраняющий меру элемент группы как-бы проходит под поднятием. Пока я видел доказательство, что такие поднятие есть у меры Лебега и у любого процесса Бернулли, если использовать сдвиги по модулю 2. Но должен быть более общий результат для топологических групп с некоторыми хорошими свойствами. Об этом я вам расскажу как-нибудь в другой раз. У топологических групп с инвариантными мерами (мера Хаара) и инвариантными поднятиями есть еще интересное свойство, что любые открытых множеств зажимаются между этими открытыми множествами и их замыканиями. Через двойственность видно, что поднятия замкнутых множеств зажимаются между их внутренностями и самими этими множествами. Интересно, что если взять меру Лебега с борелевской сигма-алгеброй, то инвариантных поднятий у нее уже не будет.

Другой важной темой является то как поднятия связаны с произведениями пространств. Подмножество произведения множеств с индексами из I называется определенным координатами J \subset I, если принадлежность к нему можно определить проверив только координаты из J. Такие множества еще обычно называют цилиндрами. Говорят, что поднятие сохраняет координаты, если для любого J, множества определенные координатами J оно снова переводит в множества определенные координатами J. Можно доказать, что любое произведение вероятностей однородных по типу Махарам будет иметь поднятие, сохраняющее координаты. Верно ли это для любых вероятностей (не обязательно однородных)? — Открытый вопрос в теории меры (вроде бы). Другое схожее понятие это консистентность. Поднятие называется консистентным, если оно естественным образом продолжается на степени исходного пространства с мерой. То есть для каждой степени существует такое поднятие, которое переводит произведения измеримых множеств в произведения исходных поднятий. Талагранд в 80-х годах доказал, что что у любых полных мер есть такое поднятие. С другой стороны это свойство отнюдь не тривиально. С помощью Теоремы Стоуна можно построить стандартное поднятие для пространства Стоуна алгебры Лебега. Такое поднятие, например, консистентным не будет.

Смежной теорией, владение которой полезно для доказательства фактов про поднятия, является теория реализации морфизмов алгебр мер с помощью измеримых функций. Для того, что иметь возможность формулировать результаты этой теории полезно определить некоторые свойства мер. Мера называется внутренней регулярной для класса подмножеств K, если меру любого измеримого множества E можно вычеслить как супремум мер измеримых элементов множества K лежащих в E. Мера называется компактной если она внутренняя регулярная для компактного класса подмножеств (Это когда у любого подкласса, у которого любой конечный подкласс имеет непустое пересечение, самого непустое пересечение). И мера называется локально компактной, если ее ограничение на любое множество с конечной мерой компактно. Интересно, что для любой компактной класса существует компактная топология такая, что все элемента этого класса замкнуты. Это очень сильно развязывает руки при работе с компактными мерами. И заметьте, что тут нет привязке к какой-то изначальной топологии на базовом пространстве. Примеры: мера Лебега на Евклидовом пространстве компактна, процесс Бернулли на любом множестве компактен, и пространство Стоуна с мерой, полученное из алгебры меры, тоже всегда компактно. Есть еще родственное понятие совершенной меры. Мера называется совершенной, если для любой измеримой по ней действительной функции, образ любого множества положительной меры будет содержать компакт, прообраз меры которого тоже положительный. Любая полуконечная и локально компактная мера будет совершенной.

Можно доказать, что если у морфизма алгебр меры домен, которого является алгеброй совершенной меры, а кодомен алгеброй строго локализуемой меры, всегда есть реализация в виде измеримой функции (стрелочка поварачевается). Измеримое простротранство называется счетно сепарируемым если можно выбрать счетный класс измеримых множеств, такой что для любой пары различных точек можно выбрать множеством из этого класса так, чтобы только одна точка из двух принадлежала это множеству. Оказывается, что если кодомен искомого изображения еще и счётной сепарируемы, то все реализации морфизма совпадают почти всюду. В общем случае это не так. Можно, например, построить процесс Бернулли на множестве мощности континуум. Для него можно построить измеримый эндоморфизм у которого не будет неподвижных точек, но он будет эквивалентен тождественному отображению в смысле алгебр меры! Еще интересный пример, это пространство "расщепленного интервала", cостоящее из несвязного объединения двух копий единичного интервала. Его алгебра измеримых подмножеств состоит из множеств разница сечений которых имеет меру Лебега ноль. Поэтому в качестве меры мы можем взять меру Лебега любого из двух сечений. Если взять отображение, которое меняет местами половинки, то снова получим эквивалентное тождественному отображение без неподвижных точек. Если рассмотреть несвязное объединение "расщепленного" интервала с обычным интервалом то можно построить не биективное отображение в себя, отображая первые два интервала в третий, а третий только в первый, которое тем не менее будет реализацией тождественного автоморфизма алгебры. При наличие счетной сепарируемости реализация любого изоморфизма может быть сделана биекцией.

Возвращаясь к поднятием. Тут вполне понятна, например аналогия с поднятиями, например, многообразий. Только вместо тут как-бы одна сигма-алгебра накрывает другую сигма-алгебру неким естественным образом и в хорошем случае получаются поднятия на накрытие. Интересно, есть ли тут какие-то далеко идущие параллели? Я пока не придумало.


Я немного устал от теории меры. Поэтому на ближайшее время переключусь на логику.
Link4 comments|Leave a comment

Erratum [Nov. 21st, 2022|07:39 pm]
[Tags|, , , , , , , , ]
[Current Mood | geeky]

В посте https://lj.rossia.org/users/rex_weblen/175181.html Я писал, что теория Махарам, по моим сведениям, нигде кроме Фремлина вся вместе не изложена.

Ночью я понял, что оно есть у Владимирова. В советском издании 1969 года "Булевы Алгебры" это глава 7, а в англоязычном издании 2004 года "Boolean algebras in analysis" это глава 9. Причем в англоязычном издании намного больше материала. Возможно, есть новое русскоязное издание, которое ему соответствует, но я его в открытом доступе не видел.

Я конечно все сразу не прочитал и не разобрал. Но скажу, что изложение у Владимирова более наглядное и менее педантичное. Есть даже картинки. Поэтому для расширения кругозора эту вещь читать стоит. Однако, параллельно с Фремлином его читать очень сложно из-за определённой терминологической путанице. Те же "нормированные алгебры", просто однородность вместо однородности по типу Махарам, хотя просто однородность уже вводилась ранее с другим определением и тому подобные сложности. Все это не помогает смешивать информацию из эти двух источников в моей голове. Поэтому углубляться в "Булевы Алгебры" Владимирова сейчас я не буду.


image
"Boolean algebras in analysis": красивая иллюстрация, например


P.S

Снилась сегодня компьютерная игра. Агент в костюме-болтушке как у Филипа Дика борется с заговором тайного общества, которое хочет устроить ядерную войну. Из-за костюма-болтушки его лицо выглядит мультяшным. Он проникает в офис злой организации в Нью-Йорке. Он похож просто на офис, кроме того, что там ходят роботы убийцы в которых нужно стрелять. Но на третьем этаже находится огромное искусственное болото с островками под названием Эдем. В Эдеме выводят новые виды животных, чтобы заселить землю после ядерной войны. Но сейчас это мутанты мелкие кусачие во сновном. В них тоже нужно стрелять. И еще в этом болоте есть огромная креветка размером с кита, которая то всплывает, то уплывает. Ее убивать необязательно, но очень крутая ачивка если ее убить. Поэтому я пытался ее ловить.
Link8 comments|Leave a comment

Теория Махарам [Nov. 20th, 2022|06:13 pm]
[Tags|, , , , , , , ]
[Current Mood | sleepy]
[Current Music |Leftover Crack - Fuck World Trade]

Обещал вам в прошлый раз уникальных результатов про алгебры меры. Поэтому давайте расскажу вам, что понял из следующей главы Фремлина. Еще про это можно почитать в главе 9 "Boolean algebras in analysis" Д. А. Владимирова.

Для начала, почему этот пост я назвал "Теория Махарам". Дело в том, что в основе всего, о чем здесь говориться, лежит статья американской мать-и-мачехи Дороти Махарам. Она вышла замуж за математика Стоуна, и стала Махарам-Стоун. Но что, удивительно, это был не Маршал Стоун, а некий английский математик Артур Стоун.






Дороти Махарам-Стоун
1917 - 2014


читать дальше... )
Link15 comments|Leave a comment

Алгебры Меры [Oct. 28th, 2022|09:00 pm]
[Tags|, , , , , , , ]
[Current Mood | sleepy]
[Current Music |David Bowie - Hanky Dory]

Продолжаю чудовищно медленно изучать Фремлина.

Алгебры меры это такой безточечный, в смысле point-free и point-less, аналог пространств с мерой. То есть это структура, которая просто состоит из некоторой сигма-полной по Дедекинду булевой алгебры (для краткости далее просто сигма-алгебра) и сигма-аддитивная неотрицательная функция на этой алгебре, которая может принимать и бесконечные значения, то есть мера. Их особенность заключается в том, что все элементы меры ноль это только ноль. В отечественной литературе их обычно называют нормированными алгебрами. Но на мой взгляд, такое обозначение может вносить путаницу, ведь как раз нормы в общепринятом понимании там нет.

Если мера достигает на единице значения единица, то такую алгебру называют вероятностной Алгеброй. Интересно, что Джейнс в своей книге по Байесовской теории как раз и работают с вероятностными алгебрами. Напоминаю, что Джеймс утверждал, что его подход эквивалентен аксиоматики Колмогорова. В этом случае элементы алгебры это события, но никаких элементарных событий, как обычно у нас учат, нет. Еще пропадает концептуальная сложность с различение событий меры ноль, пустого события и невозможного события. Теперь, благодаря Фремлину, я могу видеть как эта эквивалентность устроена во всех деталях.

Чтобы получить алгебру меры, проще всего взять какое-нибудь пространство с мерой и факторизовать его сигма-алгебру по сигма-идеалу множеств меры ноль. Такая операция задает контравариантный функтор. В качестве морфизмов можно брать измеримые отображения, уважающие меру ноль, или измеримые отображения, сохраняющие меру вообще. Есть и контравариантный функтор в другую сторону. Он сопоставляет алгебре меры ее пространство Стоуна с соответствующей мерой. И теперь становится понятно, что предложенным выше способом можно получить любую алгебры меры вообще. Достаточно взять ее пространство Стоуна. Но обратное не верно, потому что пространства Стоуна имеют строго определённую структуру.

Удивительно, но мера задает топологию алгебры! Если мера конечная, то ее действие на суммы (в булевых алгебрах тоже самое что разницы) задает метрику на алгебре. Отсюда, наверное, и ассоциация меры с нормой. А в случае бесконечной меры топологию задает семейство полуметрик, получаемых из "сужения" меры на конечные элементы. То есть тут у нас на одном множестве есть и структура кольца, и решетки по порядку, и мера, и топология (а в случае вероятностных алгебр еще и метрическая геометрия)! И все это взаимосвязано и еще друг-с-другом все время взаимодействует! Вот, например, соответствие между свойствами меры и топологическими свойствам: мера полуконечна ~ топология Хаусдорффова, мера сигма-конечна ~ топология метризуема, мера локализуема ~ топология хаусдорффова и полна (в смысле равномерности). То, что Фремлин активно пользуется понятием равномерности (uniformity), что шире применять понятия метрической топологии Бурбакам. И действительно я бы описал его стиль как вполне бурбакистский, а его труд как достойную замену книги Бурбаков про интеграл. Кстати, топология, алгебры меры тут становятся топологическими алгебрами. И вся машинерия для топологических групп и алгебр тут работает! Поэтому, например естественными подобъектами алгебр мер становятся замкнутые подалгебры. В контексте вероятностных алгебр они один-к-одному соотносятся с условными распределениями.

Из контравариантности описанных выше функторов можно понять, что произведение алгебр меры соответствует несвязному объединению. С произведением вероятностным пространств все сложнее. Там получается, что-то вроде пополнения тензорного произведения. Но я буду его все равно обозначать просто как тензорное произведение, потому что мне неохота использовать более сложную символику. Эта конструкция соответствует копроизведению, но универсальным свойством обладает только для достаточно хороших мер, хотя бы полуконечных. Но все таки давайте называть ее лучше копроизведением, а не свободным произведением как в литературе. Так вот бесконечное копроизведение возможно только для вероятностных алгебр. И в этом случае оно соответствует ансамблю независимых случайных величин. Отсюда идея, что алгебры случайных процессов можно тоже реализовывать на таких бесконечных тензорных произведения. Тут намечаются какие-то фантазмы для взаимодействия с квантовой механикой, где для обозначения взаимодействия случайных величин тоже используются тензорные произведения но уже в совсем других пространствах. Еще отсюда становится видна сущность Теоремы Колмогоровы об условиях существования случайного процесса как теоремы про пополнение тензорного произведения. Кстати, в абстрактной теории категорий есть похожее произведение Колмогорова. Может отсюда это наименование и пошло.

Как и с измеримыми пространствами на булевых алгебрах можно строить векторное пространство аддитивных функциональнов. Тут отражаются почти все результаты для измеримых пространств. Тут снова есть ограниченные и счетно-аддитивные функционалы и разложения Жордана и Ханна. Но тут появляются еще так называемые полностью аддитивные функционалы. Их можно суммировать по неограниченно большому множеству и получать значение функционал его супремума. Причем, в контексте алгебр меры любой непрерывной в нуле аддитивный функционал будет полностью аддитивным! Он же будет равномерно непрерывным. Также полностью аддитивным будут и все абсолютно непрерывные функционалы по мере. Круто, что в случае вероятностной алгебры все эти понятия вообще эквиваленты! В этом контексте теорема Радона-Никодима превращается в утверждение про эквивалентность между функторами L^1 (а его надо воспринимать именно как функтор) и функтором абсолютно аддитивных функционалов на соответствующей алгебре меры. Тут есть некоторые технические детали, которые надо уточнять.

Если на множестве индексов некоторого набора вероятностных алгебр задан ультрафильтр, то можно построить так называемое усеченное произведение. Мне кажется, что интуитивно его можно представлять себе так. Есть куча разных датчиков случайных чисел без какого-то общего распределения, и мы каждый раз выбираем каким будем пользоваться в соответствии с принципом, который задает ультрафильтр. То есть про ультрафильтр тут можно думать как про принцип выбора из бесконечного множества без определенного выбора или с ним. То есть ультрафильтр это персик в отсутствии персика или в присутствии персика. И в контексте теории вероятности, если мое виденье верно, есть какая-то загадочная связь между ультрафильтрами на множестве индексов семейства вероятностных алгебр и вероятностными распределениями на них. Потому что можно когда мы выбираем датчик случайных чисел запоминать только его индекс, а само случайное число выбрасывать. Но это не так правильно, так как мы строим вероятностную алгебру и перейти обратно к вероятностному пространству не так просто. Но кажется, что при подходе Джейнса таких сложностей не возникает. Но он физик, а не математик, и может позволить себе упускать формальности. А вообще усеченные произведения нужны для того, чтобы строить индуктивные пределы в категории вероятностных алгебр и еще всякие абстрактные конструкции. Для простых алгебр мер понятно, что никаких пределов часто нет.

Для чего нужны алгебры меры? Вообще в контексте многих сложных вопросов теории меры и вероятностей работать с алгебрами просто проще чем с пространствами. Сразу убирается вся лишняя информация. Тут тебе и метрика, и непрерывные отображения, и все функционалы сразу полностью аддитивны и конструкции типа индуктивных пределов. Но особо интересно использование алгебр мер в абстрактной негладкой эргодической теории. И я надеюсь когда-нибудь про это тут рассказать. Еще много используется во всякой современной теории множеств про разные основания математики. Но про это уж точно совсем не скоро.

Сам Фремлин пишет, что в этой главе все результаты элементарные. Вообще многие из них являются просто переводом на язык алгебр результатов классической теории меры. Но в следующих главах будут уже интересные уникальные результаты. И я надеюсь рассказать вам о них уже скоро.
Link10 comments|Leave a comment

Булевы алгебры [Dec. 25th, 2021|01:35 pm]
[Tags|, , , , , , , ]
[Current Mood | refreshed]
[Current Music |Soft Cell - This Last Night...In Sodom]

Изрядное количество сил и времени было потрачено на изучение булевых алгебр. Меня это тема заинтересовала так как казалась совершенно элементарной. Тем не менее я видел, что по ней есть какие-то толстые книги, пишутся статьи. И меня это давно интриговало.

Оказалось, что эту тему нельзя путать с алгеброй-логикой как теорией для анализа всяких интегральных схем, которую я бы отнес скорее к дискретной математики. Тут речь идет об изучении колец с отношением $x^2 = x$. Если кольцо, как положено, с единицей, то такая структура называется булевой алгеброй. А если единицы может не быть, то булевым кольцом. Такая вот путаница. Тривиальные примеры булевых алгебр: кольцо с одним элементом, поле с двумя элементами, подмножества фиксированного множества. Булево кольцо, которое не является булевой алгеброй, это, например, конечные множества целых чисел. Легко доказать, что любая булева алгебра будет коммутативной и иметь характеристику 2. Но обратное не верно, например нетривиальное расширение Галуа поля из двух элементов булевой алгеброй уже не будет. Смысл тут в том, что задавая отношение $x^2 = x$ мы получаем как-бы бесточечную (pointfree или pointless) модель наивной теории множеств, или не только наивной если рассматривать булевы кольца, при этом саму являющееся множеством. Отсюда переносятся все теоретико-множественные операции и понятие порядка. Например, порядок определятся чисто алгебраическими средствами как $x \le y \iff xy = x$, а операция объединения как $x \cup y = x + y + xy$. При этом у нас получается дистрибутивная решетка. А самым полезным из базовой теории оказалось понятие о разбиении единицы в булевой алгебре.

Однако, у нас до сих пор остается не закрыт вопрос, к какому разделу математики относить булевы алгебры? Как я уже сказал выше к дискретной математики они не относятся, и к логике их можно отнести только в силу инертности мышления. На первый взгляд это чисто алгебраическая теория, Однако как мы увидим в дальнейшем общая топология там используется довольно интенсивно. Потому просто к алгебре или тем более к топологии относить эту теорию нельзя. Один мой учитель однажды сказал, что анализ это алгебра с топологией, а тут мы имеем дело именно с эти. Поэтому буду относить алгебры к анализу. А именно к анализу алгебраическому или, если на меня обидятся любители микро и макро-локальных функций, то к аналитической алгебре. Пререквизиты к изучению этой темы это общая топология и один семестр абстрактной алгебры. Еще полезно быть знакомым с ординальными числами. Поэтому изучить все можно на втором курсе или еще раньше.

Изучал я эту теорию по учебнику Фремлина, а именно главам 31 и 38. Он особенно хорош тем, все выложен в виде теховских исходников и pdf на сайте автора, а значит учебник не скован обычными ограничениями книгоиздания. Причем, можно скачать ro (result only) версию, где будут только определения и формулировки теорем. И таким образом сразу получится подобие листочка. Недостаток такой версии в том, что там не будет и задачек и концептуальных комментариев из основной версии. А задачек там довольно много, они разделены на две категории, но скорее не по сложности, а по необходимости наличия внешних знаний. Что-то из этих задачек я решал, что-то решал из RO версий, а когда RO становились слишком сложными, то читал обычную версию. Из альтернативной литературы можно отметить Халмоша, у которого есть две книги разной сложности. Та которая посложнее вроде содержит все необходимые темы, и может подойти тем, кто не хочет слишком сильно разбрасываться камни. На Русском языке по этой теме есть Владимиров и переведенная классика Сикорский. И если Сикорский довольно сильно устарел, то Владимиров, хотя читать старую книгу может быть довольно сложновато, выделяется приложениями булевых алгебр к функциональному анализу, и в особенности к спектральным мерам операторов. Есть еще брошюра Подзорова из НГУ, но там большой упор сделан на приложения к матлогики и основаниям математики. А еще если хочется обдрочиться, то можно взять трехтомник под редакцией Монка "handbook of Boolean algebras".

Теперь перейдем собственно к содержанию. Связь с топологией обеспечивается тем, для изучения булевых алгебр активно используются пространства Стоуна или просто функтор Стоуна. Этот функтор сопоставляет каждому булевому кольцу локально-компактное ноль-мерное Хаусдорффово пространство ненулевых морфизмов из самого кольца в поле из двух элементов. Каждому элементу булевой алгебры в таком пространстве соответствует открытый компакт. И порядок тут переносится как порядок вложений. Поэтому, если булевой была алгебра, то её пространство Стоуна будет компактно. Однако существований этой конструкции в общем случае неконструктивно и требует работы с ультрафильтрами. Но, так как многие факты про булевы алгебры доказываются именно через пространства Стоуна, то можно представить, что мы имеем дело с алгебраической топологией шиворот-навыворот! То есть исследуем регулярные алгебраические структуры с помощью функтора в топологические пространства. функтор это, между прочим контравариантный. Стрелочки поворачиваются! И произведения становятся копроизведениями и наоборот. То есть, декартовым произведениям булевых алгебр соответствует несвязные объединения пространств Стоуна, а их тензорным произведениям уже декартовы произведения пространств Стоуна. Все это очень просто и логично если подумать про конечные аналоги и их комбинаторику.

Еще есть очень важные понятия о (секвенциональной) полноте, замкнутости и непрерывности в смысле порядка или по Дедекинду. Владимиров для этих целей вводит специальные топологии, а Фремлин вводит все эти понятия Ad Hoc, и, на мой взгляд, второй путь проще и понятней. Ведь речь тут идет просто про существование и сохранение инфов и супов в булевом порядке. Когда в курсе теории вероятностей говорят про сигма-алгебры, то это сокращение для "секвенционально замкнутые по Дедекинду булевы алгебры подмножеств". Поэтому дальше все секвенционально замкнутые по Дедекинду булевы алгебры буду называть просто сигма-алгебрами. А просто замкнутые по Дедекинду булевы алгебры я буду называть тау-алгебрам, потому что Т в алфавите идет после С. В целом это лютый абьюз оф нотэйшен, но сам Фремлин использует буквы сигма и тау для обозначения соответствующих замыканий. Пример булевой алгебры, не являющейся сигма-алгеброй, это алгебра конечных-коконечных подмножеств целых чисел. А пример сигма-алгебры не являющейся тау-алгеброй, это например известная Борелева алгебра на действительных числах. Интересные результаты тут это теорема Лумиса-Сикорского про то, что любая сигма-алгебра представляется как фактор сигма-алгебры подмножеств по какому-то сигма-идеалу. Еще есть интересная конструкция замыкания через построения алгебры открытых областей или регулярных открытых множеств в пространстве Стоуна со всеми универсальными свойствами замыкания. Другая возможная конструкция замыкания это алгебра идеалов, но она сильнее выносит мозг, так как операции с идеалами отличаются от обычной алгебры множеств. Самый полезный тут факт такой, что любой автоморфизм булевой алгебры тау-непрерывен.

В начале главы 38 Фремлин подробно разбирается с группой автоморфизмов булевой алгебры. Все по программе Клейна. Тут напрашивается удивительная аналогия с эргодической теорией. Тут у нас элементы булевой алгебры это регионы пространства, автоморфизмы это динамические процессы, а их степени это дискретное время. Отсюда берется представление об эргодических, смешивающих, рекуррентных и апериодических автоморфизмах. Все это создает ощущение не просто бесточечной (pointfree и pointless) эргодической теории, а эргодической теории совершено абстрактной и пустой, лишенной каких-либо конкретных измерений. Сам Фремлин пишет, что ничего полезного в нормальной эргодической теории доказать нельзя, а воспринимать эту теорию нужно скорее как модель для углубления понимания и вдохновения. В конце как вишенку на торте я разбирал теоремы про факторизацию автоморфизмов на т. н. обменивающие инволюции. Это все из далека очень напоминало теоремы из аффинной геометрии про представление поворотов в произведений отражений. Но на практике там оказалось длинное, техническое, "комбинаторно" доказательство. Такое доказательство может занять ни одну лекцию (интересно, что Фремлин противник лекций как метода обучения). Но в итоге результат звучит так, что в тау-алгебре любой автоморфизм представляется как произведение не более чем трех инволюций. Отсюда следует определенный подход к подсчету нормальных подгрупп и критерии простоты. В частности можно доказать, что у группы автоморфизмов Борелевской сигма-алгебры действительной прямой только три нетривиальные нормальные подгруппы. На мой взгляд, удивительное утверждение на стыке элементарной алгебры и элементарного анализа.

Из тем, к которым можно было бы вернуться я бы отметил теорию простых функций, но там в качестве пререквизита требуется знание упорядоченных топологических пространств, которые я не доучил в прошлый раз. Еще можно почитать про спектральные меры у Владимирова. Или про приложения к матлогике у Подзорова и Монка. Но я в ближайшее время этого делать не буду. Намного интереснее было бы изучать булевы алгебры с мерой, или нормированные алгебры как их называет Владимиров. Но перед этим я хотел бы вернуться к дескриптивной теории множеств.

В целом я очень расстроен тем, что взялся за изучение булевых алгебр. Теперь они у меня в мозгу булят другие алгебры, например, квадратичные. А я никакие формы булинга не одобряю, особенно квадратичные!
Link9 comments|Leave a comment

navigation
[ viewing | most recent entries ]