Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Топосы в Логике [Jun. 11th, 2024|11:20 pm]
[Tags|, , , , , , , , ]
[Current Mood | dorky]
[Current Music |Echo And The Bunnymen - Crocodiles]




После долгого перерыва я вернулся к изучению теории топосов по книге Маклейна-Мурдяка. Следующая глава посвящена применяю топосов в логике. И мой финт, кажется, себя оправдал. Во-первых, знакомство с булево-значными моделями, действительно помогает лучше понять конструкции, связанные с форсингом в этой главе. А знакомство с локалями делает тривиальными, на мой взгляд, все алгебраические вопросы. При изучении булево-значных моделей я читал учебник Джона Лейна Белл. У него еще есть книга про топосы, обложку которой я привожу выше. Там упор на логику особенно сильный. А вот у Маклейна этот упор считается относительно слабым по сравнению, например, с Джонстоном. И, я хотел изначально перед тем как писать этот пост прочитать всего Белла. Но сейчас, я уже понимаю, что это — слишком много времени. А читать эти книги параллельно слишком тяжело. Поэтому я просто просмотрел Белла по диагонали. И может быть я вернусь к Беллу если мне захочется глубже погрузиться в категорную логику.

Напомню, что в логической парадигме топосы рассматривают как математические вселенные, обладающее существенным подобием теории множеств. Маклэйн и Мурдяк начинают с этой темы. И разбирают, то как в топосах выражены разные более серьезные свойства теории множеств. Они используют многообразие топосов, чтобы доказать независимость гипотезы континуума и аксиомы выборы. Для гипотезы континуума используется структура знакомая по булево-значным моделям. Но язык доказательств совсем другой. А для аксиомы выбора используется конструкция знакомого нам Фрайда, когда пучки строятся на счетном ординале. То что было "частицами информации" в случае исходных доказательств теперь становиться пучками. Поэтому я предлагаю [довольно бессмысленный] лозунг "пучки = информация" для популяризации пучков.

Дальше Маклэйн и Мурдяк для каждого топосы определяют особый язык, который называется языком Митчела-Бенабу. Это язык теории типов с кванторами, где в качестве типов выступают объекты исходного топосы. Тут подход мне показался довольно неформальным. Поэтому для тех, кто любит более формальный и педантичный подход к синтаксису, я рекомендую упомянутую выше книжку Белла про топосы. Там вместо языка Митчела-Бенабу авторы начинают с формального языка "локальной теории множеств". И моделями этой теории как-раз прекрасно должны выступать топосы. Когда язык есть, для него можно построить так называемую семантику Джояля-Крипке. На практике эта семантика очень похожа на форсинг, где в качестве информации используются объекты топоса (пучки) и морфизмы из этого объекта, которые символизируют подстановку значений в переменные логических формулах. При этом Крипке вообще не совсем категорщик, а скорее логиу и философ-аналитик в классическом смысле. И его интересовала создание семантики для интуционалистской логики (то есть логики без закона исключенного среднего). И его работа не касалась топосов. Но топосы могут реализовывать любую интуиционистскую логику. Поэтому в итоге получилось объединение имен Джоэля и Крипке. Для случая топоса Гротендика существует более простая семантика, которая просто называется семантикой пучков. Она тоже похожа на форсинг. Но там в качестве информации используются объекты ситуса на которых вычисляются пучки.

Предлагаю придумать пример. Возьмем в качестве топоса совершенно классический пример пучков на евклидовом пространстве. Этот топос будет топосом Гротендика, а его ситус — открытые множества с включениями в качестве морфизмов. Тогда типы в соответствующем языке — это, например, непрерывные функции, гладкие функции, дифференциальные формы, тензоры и так далее. Разрешенные предикаты — это свойства которые всегда выполняются "локально", например гладкость. Вычисление предиката всегда выдает в качестве результата не 0 или 1, а открытое множество. В итоге имеем не-аристотелеву, не-булеву логику. В качестве предиката на гладких функций, можно например взять "является решением (не)линейного дифференциального уравнения". Такие дифференциальные уравнения задаются дифференциальными операторами, которые сами образуют пучок. В итоге, используя кванторы можно задавать на языке Митчела-Бенабу сложные объекты типа этих ваших пфаффианов. Условия форсинга в семантики Джояля-Крипке могут например выглядеть как "x ведет себя гладко в окрестности V". А для форсинга пучков просто как "наблюдаемая переменная находится в некой окрестности". Чем меньше окрестность, тем больше информации. Мне кажется, что даже тут, на простом примере, мы можем видеть потрясающую вещь, как теория топосов помогает установить связь между такими разными областями математики как дифференциальные уравнения и логика. Скажите, чего тут интересного? Понятно, что все условия связанные с гладкостью и дифференцированием могут быть записаны логически. Но тут мы видим связь с неклассической логикой, которая раньше не была очевидна.

Также язык Митчела-Бенабу может быть использован для того, чтобы конструировать в топосе объекты из других разделов математики. Мне нравится в этом отношении думать про топос как завод, которому можно дать чертежи на формальном языке, и он собирает по ним кусок теории. Но логики топоса в общем случае интуциолналистская, поэтому безусловно верными оказываются только интуционалистсуки доказанные теоремы. Если топос булев, то есть его классификатор подпространств оказывается внутренней булевой алгеброй, то там можно собирать любые классические теории. То есть в этом плане булев топос как завод более полезен. Только после того, как я это осознал, я понял истинную важность инстуционалистской логики, как логики "заказов" для произвольного топоса. До этого я считал интуционализм каким-то барским капризом. Типа "не хочу закон исключенного третьего и все".

В качестве примера такой конструкции Маклейн и Мурдяк собирают действительные числа в топосе пучков на топологическом пространстве, используя сечения Дедекинда. Удивительно, но в итоге получается просто пучок непрерывных действительно-значных функций. Кажется, это означает, что все утверждения верные для таких интуицоналистских действительных чисел должны быть верны для непрерывных функций в классической математике. Например, отсюда мы получаем, что даже такая простая теорема, что ограниченная монотонная последовательность имеет предел не верна в интуиционализме. Также на специальном ситусе из открытых подмножеств евклидовых пространств с непрерывными функциями в качестве морфизмов, конструируются интуиционистские действительные числа, на которых любая функция непрерывна. Это теорема Брауэра. Поэтому кажется, что для действительного анализа лучше подходят булевы топосы. И мы действительно уже видели булево-значный анализ, где действительные числа конструируются как измеримые функции, и как самосопряженные коммутирующие операторы на гильбертовом пространстве. Кажется все эти примеры братья из одного ларца.

Касательно бессмысленного лозунга "Пучки — это информация." Мне кажется, что было бы правильно говорить, что информация это объекты ситуса. А пучки это "правильные способы интерпретации информации" или способы получения знаний. Причем правила задает структура ситуса. Знания выражаются в виде множеств возможных миров. Чем больше знаний, тем меньше множество. То есть в какой-то безумной интерпретации можно думать о непрерывных функция как возможных мирах. но я не додумал.

В целом чистая логика и основания математики меня не так сильно интересуют сам по себе. А если интересуют, то как способ генерации примеров. Поэтому дольше с этой темой я задерживаться не хочу. Пойду разбирать Маклейна до конца.
Link63 comments|Leave a comment

Топосы Гротендика [Nov. 9th, 2023|10:04 pm]
[Tags|, , , , , , ]
[Current Mood | excited]
[Current Music |The Happy Hood: An Interview With Alan Moore]




Несмотря на долгое молчания я продолжал изучать эту книгу про топосы. Учитывая все мои мытарства на освоение третей главы у меня ушло целых два месяца. Однако, это того стоило, потому что я наконец-то дочитал до концепции нового уровня, а именно топоса Гротендика. Как всегда освоение нового уровня требует усилий.

Топосы Гротендика это буквально, по определению, категории изоморфные категориям пучков. Но не просто пучков на топологических пространствах, а пучков на ситусе (site). Ситусы это малые категории с топологией Гротендика. Топология Гротендика это обобщение понятия топологии с множеств на категории. Заметим, что определение топологии на множестве эквивалентно определению множества открытых покрытий. При этом в малой категории открытых множеств включение множеств соответствует просто существованию морфизма, вложения, между этими множествами. Идея, топологии Гротендика в том, чтобы повторить эту ситуацию, но с объектами категории вместо открытых множеств и просто морфизмами вместо включений. Тогда множествам покрытий соответствуют множества решет (sieve, обобщенных накрытий), которые меняются от объекта к объекту. Решето на объекте X это просто множество морфизмов с кодоменом X, замкнутое под предкомпозицей. Интересно, что про решета можно также думать как про подфункторы. Топологии Гротендика должны удовлетворять ряду свойств. Аксиомы топологии Гротендика это обобщения следующих свойств открытого покрытие: 1) Пространство покрывает само себя. 2) Покрытие множества ограниченное на его подмножество будет покрытием подмножества. 3) Если взять покрытие и заменить его множества на покрытия этих множеств, то мы снова получим покрытия.

Базовым примером ситуса является категория открытых множеств. Но есть и другие примеры. Например разные упорядоченные множества с "топологией порядка" или "плотной топологий". Наименьшая возможная топология Зарисского называется тривиальной, а наибольшая, не содержащая пустые покрытия, называется атомной. Важным примером, приведшем Гротендика к созданию этой теории, является топология Зарисcкого из алгебраической геометрии. Причем, ее можно определить не только для поля, а для произвольного коммутативного кольца k. Малой категорией для топологии Зарисского выступает категория двойственная конечно-порождённым коммутативным унитарным k-Aлгебрам. Покрытиями алгебры A я буду называть конечные множества элементов А, такие что единица лежит в идеале, порождённом этим множеством. Каждому такому элементу a можно сопоставить канонический гомоморфизм. В алгебру дробей A[a^(-1)]. И если алгебра A соответствуют алгебраическим многообразиям, то такие отображения соответствуют гиперповерхностям a(x) = 0 в этих многообразиям. Поэтому каждому покрытию алгебры A можно сопоставить покрытие "гиперповерхностями", что для многообразия означает покрытие дополнениями к геометрическим гиперповерхностям. И эти покрытия и порождают топологию Зарисского как топологию Гротендика. Использование ситусов тут продиктовано тем, что в произвольном кольце k может не выполняться теорема Гильберта о нулях.

Сам по себе встает интересный вопрос, существует ли аналог топологии Зарисского у некоммутативных колец? Например, подобную теорию развивал Розенберг. Интересно, что другой вариант ответ на этот вопрос пришел из теории моделей, где придумали структуры Зарисского. С этой теорией можно ознакомиться в диссертации Солянки из Оксфорда.

Пучки на ситусах это предпучки (контравариантные функторы в категорию множеств), которые позволяют единственно-возможным образом склеивать согласованные семейства элементов на обобщенных открытых множествах покрытия (говоря проще, на покрышках), и получать элементы на покрываемом объекте. Самый канонический пример это непрерывные функции на открытых множествах. Другой пример, это структурный пучок в топологии Зарисского, который является просто забывающим функтором. Про элементы этого пучка на k[a^-1] можно думать как про рациональные функции, у которых может быть полюс только в поверхности a(x) = 0. Можно догадаться, что категории пучков будут элементарными Топосами. А элементарные топосы, которые эквиваленты категориям пучков и будут топосами Гротендика. Можно определить топосы Гротендика, без отсылок к пучкам. Этот результат называется теоремой Жирада, и он достаточно технически сложный.

Поэтому, у категорий Гротендика есть присущие элементарным топосам фичи. Их объекты можно складывать, умножать и возводить в степень. Также есть классификатор подобъектов, который состоит из замкнутых пучков. Пучки и топоса Гротендика будут иметь логику подпучков, которая соответствует полной алгебре Гетинга. Причем, любую полную алгебру Гейтинга можно получить таким образом. На упорядоченных множествах с топологией плотности, эта логика будет булевой. А если взять атомную топологию, то эта топология будет атомной, то есть каждый элемент булевой алгебры будет содержать атом. Поэтому атомная топология так называется.



Интересный и нетривиальный пример — это топос B(G) дискретных множеств с непрерывным действием топологической группы G. Оказывается, такие множества можно представить как пучки на малой категории, где открытым подгруппам G сопоставляются множества классов смежности. Если в качестве группы G взять группу перестановок натуральных чисел S_infty, то получаемая конструкция называется топосом Шануэля. Можно доказать, что он эквивалентен пучкам на категории конечных подмножеств натуральных чисел с морфизмами-инъекциями. Этот пример уж точно не сводится к топологическим пространствам.

***


Равномерные пространства позволяют оперировать интуитивными понятиями элементарной метрической топологии, когда никакой метрики нет. Есть определение равномерной структуры Туки: равномерная структура это множество "равномерных" покрытий, которое является фильтром относительно звездных измельчений. Раньше мне это определение казалось довольно неуклюжим по сравнению с более алгебраическим определением А. Вейля через антуражи, но теперь меня заворожило его сходство с определением топологии Гротендика. На топологических пространствах Топологии Гротендика это тоже фильтры покрытий, только относительно порядка просто измельчений. Причем, равномерные структуры Туки будут топологиями Гротендика в категории открытых множеств пространства, если этим пространства полностью ограничены, то есть имеют компактные пополнения. Это не удивительно, ведь для компактов топология содержит полную информацию о равномерной структуре (все непрерывные отображения компакта равномерно непрерывны). Поэтому такие равномерные структуры соответствуют топологиям на компактных пополнениях.

Французский академик Ив Андрэ в своей статье uniform sheaves and differential equations использовал эту идею для того, чтобы обобщить концепцию раздутия на проколотые p-адические области и определить p-адические когомологии де Рама. Область научных интересов Андрэ называется не-Архемедовой алгебраической геометрией. Если вам интересна эта область математики, то я бы рекомендовал начинать с изучения книги Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry. Она начинается с самых азов не-Архимедового анализа и не требует особой предварительной подготовки в современной алгебраической геометрии. Потом можно читать книгу Берковича https://bookstore.ams.org/surv-33-s. Потому что пространства Берковича, ставшие фундаментальными в этой теории появляются именно там. Эта книга не такая фундаментальная, но довольно короткая.

Но пишу я об тут не ради не-Архимедовой алгебраической геометрии, а потому что меня эти равномерности просто торкнули, и я начал задаватьcz вопросами. Например, можно ли, используя аналог определения Туки определить равномерные структуры на ситусах? Основной преградой к этому является определение звездных измельчений. В общей топологии эти измельчения определяются с помощью теоретико-множественных операций. Но в случае общих категорий этот подход нам недоступен. Поэтому пока я думаю, что звезда Туки для морфизма в решете должна определяться через универсальное свойство кодекартова квадрата, но не просто кодекартова квадрата, а такой кодекартовой кирпичной стены, состоящей из всех ненулевых расслоенных произведений с морфизмами в решете. Но я не уверен. вопрос как правильно, зависит от возможности найти интересные примеры.

Для того, чтобы разобраться с примерами. То нужно для начала разобраться с тем, как равномерность связана с топологией. Считать, что равномерность просто порождает топологию Гротендика неправильно. Потому что тогда нам не получиться повторить интересную ситуацию с компактными пополнениями, и раздутиями. Кажется, что на практике топологии Гротендика топологии получаются из топологий Гротендика равномерности путем добавления пересечений цепей измельчений. И это можно считать частью определения того, что равномерность на ситусе подходят топологии Гротендика. Теперь можно задаться вопросом, какие равномерности можно задать на топологии Зарисского? А какие на топосе Шануэля? Если Топология Гротендика порождает саму себя как равномерность, то такой топос можно назвать компактным. А если у топоса есть равномерность, которая сама является топологией Гротендика, то паракомпактным. Можно рассуждать о раздутиях паракомпактных топосов и пополнениях топосов в более общем смысле. И все это без каких-либо отссылок к точкам, метрикам и сходящихся последовательностях. Поэтому, неудивительно, что существует теория равномерных локалей, которая должна включаться и сюда. Про локали я планирую рассказать через один математический пост.

Другой интересный вопрос это равномерные пучки. Понятно, что когда равномерность является топологие Гротендика, то равномерные пучки это просто пучки для этой топологии Гротендика. Но можно ли определить их аналог, для случая когда равномерность не топология Гротендиика? Кажется, что в общем случае мы получим просто предпучки, поэтому лучше говорить не равномерные пучки, а унипучки, потому что он не пучки. Я думаю, что можно был ослабить определение пучков и потребовать, чтобы они склеивались только на звездных измельчениях, чтобы оно всегда работало на равномерностях. Причем, понятно отсюда, что унипучков будет больше чем пучков. С одной стороны, можно считать Пучки непрерывными функциями со значениями множествами, поэтому унипучки это не равномерно-непрерывные функции со значениями-множествами. Унипучки это что-то, что можно склеивать равномерно, то есть на практики, только с помощью маленьких аккуратных движений. И равномерность как-раз задает правила того, что считается аккуратным. Мне кажется, что унипучки будут разделенными пучками на топологии, к которой они подходят. То есть если их можно склеить, то это можно сделать только единственным образом. Получается, что каждая равномерная структура задает какое-то погружениям в хорощо-устроенные категории. Можно предположить, что категория унипучков должна быть квазитопосом. Примеры унипучков, которые не являются пучками: ограниченные функции на открытом интервале, разные функции ограниченного роста, непрерывные функции с конечным числом особых точек на действительной прямой. Но это все примеры на открытых множествах. А какие могут быть примеры в более абстрактном контексте.

У Андре есть еще более общее определение равномерной структуры на объекте категории с конечными степенями. Но совершенно не понятно как его использовать. Может быть мое определение соответствует тому, чтобы взять в качестве объекта топос Гротендика в категории квазитопосов. Тогда антуражи будут соответствовать погружениям топоса Гротендика пучков в квазитопос унипучков.

Другое важное замечание Андре это связь предкомпактных равномерных структур c борнологиями. Это ставит на сцену связь между топологиями Гротендика и грубой геометрией. Кажется именно такие пространства и их гомологии является ее предметом. Что-то из этого было давно известно.

***


Пока любые попытки рассуждать, о топосах Гротендика приводят меня к примерам, связанным с топологией. Поэтому, мне хочется сказать, что топосы Гротендика это категории, работа с которыми похожа на работу с топологическими пространствами. В том же смысле, что абелевы категории, работа с которыми похожа на работу с коммутативными алгебраическими объектами. Даже если забыть о ситусах. В целом категории ситусов и топостов Гротендика эквиваленты. И их можно считать разными взглядами на одно и то же. Поэтому Топосы можно представлять себе как такие топологические пространства, которые в общем случае почему-то нельзя полностью описать, а можно только частично. И каждый пучок является частью такого описания. С другой стороны топосы можно считать чем-то вроде теорий множества, зависящих от параметров. Но об этом я расскажу в следующий раз.
Link22 comments|Leave a comment

Про Пучки [Sep. 8th, 2023|09:03 pm]
[Tags|, , , , , , , ]
[Current Mood | sleepy]
[Current Music |Conker's Bad Fur Day]

Я писал тут недавно, что перехожу к теории топосов. Как я уже писал в том посте я продвигаюсь вперед ужасно медленно. Но это объясняется неизвестным вам причинами. Как я писал я выбрал для себя учебник Saunders Mac Lane , Ieke Moerdijk; Sheaves in Geometry and Logic : A First Introduction to Topos Theory.



В целом познание теории топосов широкой публикой осложняется тем, что существуют два дополняющих друг-друга определения топоса. Это топос Гротендика и элементарные топосы Лоури. Но если говорить популярно, то топосы это такие математические вселенные в которых возможны всевозможные конструкции. Так как определение топоса Гротендика опирается на концепт категории пучка, МакЛейн начинает свое изложение с понятия пучка над топологискими пространствами. И я пишу этот пост после освоения двух первых глав, перед переходам к настоящим, абстрактным топосам.

Из пререквизотов, для освоения этого материала вам понадобятся только знание начал общей топологии и абстрактной алгебры. МакЛейн кратко излагает основы теории категорий в самом начале. Но мне это ведение не понадобилось, потому я его не читал и ничего сказать про его достаточность не могу. Во всяком случае тут теория категорий это основное топливо. Все понятия из математической логики тут вводятся в процессе изложения. Однако предварительное знакомство с ней все же будет полезно, а также знакомство с дифференциально геометрией, алгебраической топологией и комплексным анализом. Потому что тут очень много примеров, которые теоретически можно пропустить. Но если все же потратить время на все эти примеры, это сделает опыт чтения ярче. Обилие примеров это одна из черт стиля МакЛейна. Другой, я бы назвал то, что не закапывается слишком глубоко в детали. Поэтому не раз я чувствовал желания написать какой-нибудь фрагмент доказательства или нарисовать коммутативную диаграмму. Но меня такой стиль вполне устраивает. Чего тут нет, так это гомологий в пучках. Если вам интересна эта тема, то придется читать другие книги. Кстати, Джонстон, который мне показался слишком сложным, как мне кажется показался слишком сложным, возможно, касается этой темы.

Первую главу сложно однозначно характеризовать однозначно. Но там тоже объясняются всякие предварительные понятия полезные для определения топосов. В целом, я уже знал большую их их часть, но тут более систематический подход с пулбэкам. Поэтому это мне было полезно. Тут, наверное, главное понятие это предпучки на категории. Предпучки это просто контравариантные функторы из малой категории в категорию множеств.

Другое интересное понятие тут это классификатор подобъектов. Он позволяет описать множество подобъектов любого объекта как множество морфизмов в этот классификатор. В категории множеств этот классификатор это бинарная булева алгебра {0,1}. Но благодаря теории булево-злачных моделей мы знаем, как построить похожую би-полную категорию с классификатором — любой булевой алгеброй B. У МакЛейна есть интересная интерпретация сложных классификаторов как путей к истине. В в случае категории предпучков эти пути к истине образуют решета морфизмов в базовой категории. Меня задел момент, когда МакЛейн писал, что в классических алгебраических категориях не может классификатора подобъектов. Потому что такой классификатор должен содержать в себе изоморфную копию, любого объекта этой категории. Например, это могла бы быть группа, содержащая в себе все группы. И конечно, такого не бывает. Но с этой задачей могла бы справиться модель-монстр теории групп из теории моделей. Она, конечно, не была бы множеством. Но если придумать другое определение категорий и топосов, чтобы можно было использовать два типа объектов, например, группы-классы и группы-множества. Причем переделать все универсальны кванторы только по группам-множествам, а все экзистенциональные кванторы, и по группам множествам, и группам классов. И тогда модель-монстр можно использовать как классификатор подобъектов. И эти классические алгебраические категории тоже будут элементарные топосами.

Грубо говоря, элементарные топосы это категории со всеми конечными пределами и копредалами, экспоненциальными объектами и классификатором подобъектов. Интересно, что в элементарном топосе множество подобъектов подобъектов образуют алгебру Гетинга. И сам классификатор подобъектов является объектом-алгеброй Гетинга в унивресальном смысле. Потому каждый элементарный топос обладает собственной внутренней, возможно неклассической, логикой.

Вторая глава тут собственно про пучки. Но только про пучки на топологических пространствах. Пучки это предпучки на категории открытых множеств топологического пространства для которых выполняется лемма о склеивание. Конечно, эти пучки являются элементарными топосами. И их классификаторы подобъектов это открытые множества исходного подпространства. Поэтому опять же открытые множества образуют алгебру Гетинга. Любая алгебра Гетинга, а значит любая (не)классическая логика, может быть реализована как алгебра открытых множеств некоторого топологического пространства. Это должно быть пространство Стоуна, этой алгебры. Но мы тут забегаем вперед. У Манина мы еще видели пучки вычислимых функций на рекурсивно заданных множествах. Поэтому видов пучков должно быть намного больше че только топологические пространства.

По моим ощущением, главная теорема этой главы, это результат про эквивалентность пучков и этальных пространств. Этальные пространства над X это топологические пространства снабженные локальным гомеоморфизмы снабженные локальным гомеоморфизмом в X. Это делает этальные пространства обобщениям накрытия из алгебраической топологии. Также как и накрытия они обладают некоторой связью с теорией Галуа, и позволяют переходить к т. н. этальным группам пространства. Но это тоже уже немного забегаю вперед. МакЛейн использует совершено потрясающую аналогию для разъяснения этой связи. Я чуть не упал со стула от смеха, когда это увидел. Он пишет, что про слои Этального пространства можно думать как про шашлык. И у накрытия это будет ровный и аккуратный шашлык из одинаковых кусочков. А у этального пространства на одном шампуре могут быть куски разного размера, и овощи. И почти что определение тут:

image

Так вот, сегодня мы узнали, что бывают математические вселенные, которые состоят из шашлыка. Живите с этим.
Link13 comments|Leave a comment

Общая Топология [Sep. 9th, 2020|08:38 pm]
[Tags|, , , , , ]
[Current Mood | sleepy]

Недавно закончил повторять для себя общую топологию, поэтому решил написать этот пост, чтобы зафиксировать мысли об этой науки.

С той точки зрения, что математика это продолженная логика, общая топология — это логика пространства. А учитывая то, что любая хорошая философия полностью сводится к математики и логики, получается что общая топология это совершено общая и правильная философия пространства. И любые попытки придумать новую философию пространства, и, кстати, времени, всегда обречены на переизобретение той же самой науки — общей топологии. И это делает все попытки философов заниматься этой областью совершенно тщетным и бессмысленными. Что, кстати, отчасти делает совершенно неактуальной и физику Аристотеля. Поэтому, если вас интересует такая философия, то лучше изучайте топологию, а не Аристотеля.







Если конкретней, то в общей топологии пространство определяется путем выделения открытых и замкнутых множеств. У этой конструкции есть интересная интерпретация через теорию вычислений. В ней открытые множества соответствуют утверждениям про элементы пространства, которые можно алгоритмически проверить истинность этого утверждения для любой конкретной точки за конечное время. А замкнутые множества утверждениям которые подобным образом опровергаются. Причем, при этой модели вычислений можно запускать параллельно бесконечное количество алгоритмов. Из этой идеи легко выводятся все остальные аксиомы топологического пространства. Вроде бы это придумал Джет Неструев. Интересно подумать, как это подход ложится на остальные топологические концепции?

Говорят, что общая топология это мертвая наука. И действительно, по ядерным для нее темам почти не выходит новых статей. Поэтому молодому математику сделать карьеру занимаясь чистой общей топологией практически невозможно. Однако знать эту науку тем не менее нужно хорошо. Если сильно упрощать, то тут речь идет о расширение концепций анализа, связанных с понятием предела, на случай разных патологий, связанных с тем, что рассматриваемые пространства отличаются от действительной прямой. В самом знакомстве с этими патологиями нет большой ценности, но она есть в умении узнавать и наличие и отсутствие. И использовать знание регулярность для упрощения доказательств других интересных фактов, а знание нерегулярности ля того, чтобы не попадать в глупые ловушки. В целом хорошее знание общей топологии необходимо для изучения дифференциальной, метрической и алгебраической геометрии, дифференциальной и алгебраической же топологии, функционального анализе и теории динамических систем.

Однако прим моем недавнем погружении в эту науку я обнаружен некоторые ее разделы, которые не входят в базовый курс. Одна из этих тем связана с подробным изучением свойств Стоун-Чеховских компактификаций всяких простых пространств типа множества целых чисел. Отсюда еще получается теория странных конструкций, называемых ростами (grow). И все это дело еще как-то применяется, причем к теории Рамсея. Но я в это особо не погружался, это так сказать наметки на будущее. Еще можно попробовать изучать топологические группы в контексте топологической же динамики. Но мне лень погружаться в эти топологические группы на 100% и я разобрал только самые базовые теоремы.

Вот вам в качестве бонуса набор обзоров на книжки, которые я изучил, ознакомился или просто был наслышан, и которые я могу рекомендовать для изучения этой науки. Пойдем от простого к сложному:

обзор книг )
Link9 comments|Leave a comment

navigation
[ viewing | most recent entries ]