Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Локалические Топосы [Sep. 8th, 2024|08:06 pm]
[Tags|, , , ]
[Current Mood | quixotic]
[Current Music |The Sound -- From The Lion's Mouth]

Значит так, локалические топосы — это localic topoi или localic toposes. Не знаю как точно переводить слова localic, но точно не как «локальный».

image

Локаличечкие топосы — это топосы эквивалентные топосам пучков на локалях. Что такое локали я уже рассказывал в серии постов по бессмысленной топологии. Мак Лейн тоже начинает с введения в этот предмет, крайне неплохого. Меня зацепило, что он тут вводит понятие шизофренического объекта. Шизофренический объект существует в контексте двух двойственных категорий. И операция морфизмы в шизо-объект позволяет переходить между этими категориями каноническим образом. В контексте двойственности Понтрягина шизо-объект — это окружность. А в контексте двойственности Стоуна шизо-объект — это множество из двух элементов.

Мне также нравится как про локалические топосы написано у Джонстона во втором томе его книги «Sketches of the Elephant». Там в начале развивается теория локалических топосов, а потому уже на их основе формулируется более общая теория топосов Гротендика. Еще я нашел записки курса Джэйкоба Лурье. Там тоже есть все необходимые сведенья.

Важный факт про локалические топосы такой, что любой топос пучков на частично упорядоченном множестве будет локалическим.

Также тут появляются такой важный объект как открытые геометрические морфизмы. Тут есть прямая связь с открытыми отображениями в общей топологии. Но также открытые геометрические морфизмы можно описать и чисто логически как функторы сохраняющие определенные логические кванторы в топосах. Эта тема требует некоторой технической работы.

Первая главная теорема этого раздела это теорема Барра. Теорема Барра говорит, что любой топос Гротендика накрывается сверху топосом пучков на полной булевой алгебре. Для доказательства этого результата используется другой примечательный факт известный как теорема о накрытиях Дьяконенку. Эта теорема утверждает, что любой топос Гротендика можно накрыть сверху локалической категорией геометрически и открыто. Наверное с точки зрения логики это означает, что любую математическую вселенную можно достаточно хорошо описать с помощью правильной неклассической логики, и с определенным приближение и правильной классической логикой.

Вторая именная теорема в этой главе — это теорема Делиня, которая утверждает, что в любом когерентном топосе достаточно точек. Грубо говоря когерентные топосы — это топосы Гротендика, заданные на ситусе с всеми пределами и с локально-конечной базой покрытий. Когерентные пространства — это топологические пространства с базой топологии из конечных множеств. Кажется, что после такой аналогии все должно быть понятно. Когда говорят, что у топоса достаточно точек, то под точками понимают функторы в этот топос из категории SET. И то что их достаточно означает, что для двух различных геометричесх морфизмов из этого топоса всегда найдется точка, которая их различит. Мак Лейн загадочно замечает, что эта теорема является аналогом теоремы Геделя о полноте для топосов. Но если я правильно помню, то теорема Геделя о полноте эквивалентна теореме о компакектности в логике. Которую тоже можно сводить к изучению компактности Стоуновского пространства алгебры Линденбаума этой логики. Кажется, что тут когерентность как-раз оказывается правильным переформулированным условием компактности. Потому что тут у Мак Лейна все как раз доказывается через пространства Стоуна. Но все это можно будет полностью осознать только прочитав следующую главу.

Для меня лично эта теория крайне важна. Но я не уверен, что я во всем полностью разобрался. наверное придется еще читать Джонстона или Лурье.
Link49 comments|Leave a comment

Классифицирующие Топосы [Aug. 22nd, 2024|11:39 pm]
[Tags|, , , , , , ]
[Current Mood | anxious]
[Current Music |Обсуждаем художественное творчество и философию Юрия Мамлеева]




Значит так, классифицирующие топосы. Не совсем моя тема. Но мне кажется, идею я понял. Вещица это занятная. Но зачем она нужна сказать не могу. Может быть тут появится какая-то ясность, когда я прочитаю главу про геометрическую логику. Но может это просто такая прикольная шутка.

Если вы не хотите читать этот пост, то все равно рекомендую пост Джона Баеза про торсоры, на который я дальше ссылаюсь.


Чтобы понять, что такое классифицирующий топос предлагается вспомнить про классифицирующие объекты в алгебраической топологии. Вспомним, что такое симплициальный объект. А конкретней можно рассмотреть cимпликтический объект — цепь, задающую сингулярные гомологии пространства Х. Тогда можно построить ко-цепь морфизмов оттуда в произвольную Абелеву группу. Когомологии этой ко-цепи называются сингулярными когомологиями Х с коэффициентами в А. Про эти когомологии можно думать как про би-функтор из произведения категории пространств на категорию Абелевых групп в категорию Абелевых групп. В курсе алгебраической топологии доказывают, что это этот функтор принимает одно и то же значение на всех гомотопически-эквивалентных отображениях. Пространство K называется пространством Эйленберга-Мак Лейна энной когомологии, если эта энная когомология у него всегда устроена просто как множество эндоморфизмов той группы, в которой лежат его коэффициенты. И действительно можно доказать, что такое пространство существует. Назовём универсальный класс когомологий, который переходит в тождественное отображение под этой эквивалентности. Тогда уже для произвольного класса когомологий c произвольного пространство X можно однозначно с точностью до гомотопии построить отображение из X в K так, чтобы гамма перешла в c (тут учитывается, что функтор контрвариантный). Получается, что есть естественная биекция между классами когомологий произвольного и классами гомотопически-эквивалентных отображений в пространство Эйленберга-Мак Лейна. В таком случае говорят, что пространство K является классифицирующим объектом для энных когомологий, но оно еще не является классифицирующим топосом. Польза, как я понял, тут такая, что получающиеся с точность до гомотопии отображения можно применять к универсальным классам когомологий другого порядка. И таким образом получить контрабандные переходы между этими классами. Примеры, тут такие: окружность является классифицирующим пространством для первой когомологии с коэффициентами в натуральных чисел. А для второй когомологии это уже бесконечномерное комплексное проективное пространство. То есть, такое впечатление, что сложность классифицирующих пространств растет очень быстро вместе с порядком когомологии.

Другой топологический пример — это расслоения топологических групп. Для начала можно рассмотреть грассманиан (многообразие соостоящие из подпространств фиксированной размерной) и многообразие Штифеля (состоящее из наборов ортогональных векторов) одной размерности в эн-мерном пространстве. Тогда, натягивая подпространства, получим накрытие многообразия Штифеля Грассманиана. Ортогональная группа транзитивно и свободно действует на каждый слой этого накрытия. Так мы получили главное расслоение ортогональной группы. Главным свойством тут является то, что действие на группы должно сохранять слои. Это эквивалентно существованию локальной тривиализации с определенными свойствами, что очень похоже на определение гладкого многообразия. И это не просто так. Потому что касательные расслоения являются главными расслоениями для общей линейной группы GL(...). Другим примером являются (регулярные) топологические накрытия. И в этом случае группой будет их топологическая группа Галуа! Без особых проблем можно определить морфизмы главных расслоений, и не сложно показать, что все такие морфизмы будут гомеоморфизмами. По аналогии с когомологиями можно также определить универсальное расслоение над пространством X c группой G, как такое расслоение, что любое другое главное расслоения с группой G получается как пулбэк некоторой непрерывной функции с образом в Х. Теперь снова отображения определяется c точностью до гомотопии. Такое пространство обозначают ВG. И можно сказать, что множества главных расслоений с группой G над Y канонически и естественно эквивалентно классам гомотопически-эквивалентных отображений из Y в ВG. Опять мы имеем дело с классифицирующим объектом, но не классифицирующим топосами.

Потом речь заходит про торсоры, и торсоры дают нам первый пример классифицирующего топоса. Мак Лейн определяет торсоры как главные расслоения дискретных групп. И из результатов про этальные пространства в начале книги сразу следует, что их можно представлять как пучки с действием группы транзитивным и свободным на ростках. Джон Баез дает в своем блоге более элементарное определение торсора. Он пишет, что торсор — это группа, забывшая свой единичный элемент. То есть тут канонический пример — это отношения векторного и аффиного пространства. А в предыдущем абзаце торсорами были сечения главных расслоений. В целом очень рекомендую этот пост Джона Баеза, потому что там много элементарных примеров из школьной физики и теории музыки. Но также там есть и более продвинутая физика типа спина электронов и калибровочной теории. И кажется, что тут мы приходим к противоречию между определениями Джона Баеза и Мак Лейна. Но это не совсем так. Потому что используя торию сопряженных функторов можно доказать, что определение Мак Лейна эквивалентна тому, что квадрат пучка канонически изоморфен произведению пучка на группу. Поэтому в некотором смысле это тоже особая форма эквивалентности объекта действующей на нем группе (если сократить множитель, хотя эта операция и не имеет смысла). Это определение легко обобщается на произвольные топосы. yниверсальный торсор для группы G — это она сома как объект в категории пространств с действием группы G. Напомню, что эта категория — это топос BG. И он будет классифицирующим топосом для торсоров. То есть, любой торсор в топосе T получается из некоего геометрического морфизма T -> BG. И эта операция заключается в вычисление обратной части геометрического морфизма на G.

Грубо говоря определить классифицирующий топос можно для геометрический теории. Грубо, потому что мы нигде не определяли, что такое геометрическая теория. Потому пока геометрическая теория это просто некоторая операция, которая более-менее функториально конструирует в любом данном топосе подкатегорию, которую я буду называть категорией моделей данной теории в данном топосе. В предыдущем примере была теория торсоров. Можно также, например, рассмотреть тривиальную теорию у которой любой объект всегда будет моделью. Классифицирующий топос такой тривиальной теории называется просто классификатором объектов. Оказывается такой топос не сложно описать просто как категорию функторов из категории конечных множеств в категорию произвольных множеств с универсальным объектом — функтором вложения. Кажется, что пользой от знания классифицирующего топоса может стать операция замены топоса для модели. Так как геометрические морфизмы работают в обе стороны. Можно также по аналогии с контрабандой между когомологиями разного порядка попробовать организовать контрабанду между моделями разных теорий. И наверное всю историю с когомологиями как-то тоже можно описать через пучки. Поэтому, наверное, иногда и говорят про когомологические теории.

Дальше приводятся примеры:

Для теории коммутативных колец классифифицирующим топосом будет топос предпучков на категории двойственной к конечно-порождённым коммутативным кольцам. Это малую категорию можно считать очень простым обобщением идеи алгебраического (аффиного) многообразия. Универсальной моделью кольца будет функтор вложения. Другой пример, это теория локальных колец. Локакальным называют такое кольцо, где максимальный идеал единственен. Это условие можно переписать так, что для каждого элемента либо он сам обратим, либо единичный минус этот элемент обратим. Идея тут, кажется, в том, чтобы определит класс колец похожий на ростки гладких функций в точке. Например, кольцо многочленов не будет локальным. Классифицирующим топосом для локальных колец будет топос Зарисского. Это пучки на той же малой категории, что и выше, с одноименной топологией. И универсальной моделью локального кольца выступает так называемый структурный пучок. Это что-то вроде ростков многочленов на соответствующем алгебраическом многообразии. Причем, структурный пучок — это то же самое, что и вложение в данном случае. Интересно, можно ли из всего этого построить функтор локализации.

Другой пример, этой теория линейных интервалов. Интересный пример модели линейного интервала в котегории пучков на замунутых множеством топологического пространства с локально-конечной топологией Гротендика — это непрерывные функции со значениями в интервале [0,1]. Можно доказать, что классифицирующим топосом для них является топос симплициальных множеств. Тут главная идея в том, что для любой модели линейного интервала можно построить симплекс произвольной размерности в данном топосе. А если есть симпликсы, то на топосы можно определить сингулярные комлексы, а также функтор геометрической реализации для симплициальных моделей в данном топосе. Например в топосе пучков симплексы размерности n могут фактически состоять из непрерывных функций со значениями в обычных симплексах.

Еще один пример это разрешимые объекты, которых классифицирует топос Шануэля. Топос Шануэля, можно представить как категорию пространств с действием группы перестановок натуральных чисел. Разрешимые объекты — это те объекты, диагональ в квадрате которых имеет дополнение. Это можно интерпретировать с точки зрения теории вычислений, что у этих объектов есть вычислимая операция сравнения элементов. Только смысл слова "вычисления" зависит от топоса. Например, в топосе множеств, или в общем говоря, в любом булевом топосе все объекты разрешимы.

Ине эта глава понравилась. Тут много примеров, а доказательства не сложные. Но они требуют теории фильтрующих функторов. То есть фильтрующие функторы тут выступают в роли такого дракона, которого нужно победить, чтобы попасть в пещеру с сокровищами.
Link174 comments|Leave a comment

"Категория" топосов I [Jul. 5th, 2024|01:05 am]
[Tags|, , , , , ]
[Current Mood | sick]
[Current Music |Spaceman 3 - Sound of Confusion]


Я решил написать отчет о своих занятиях математикой. Изначально я планировал писать это отчет, когда закончу с главами 7 и 8 из "Пучков в Геометрии и Логике". Но я оказался в ситуации неопределенности. Поэтому решил оставить заметку сейчас. 

Я назвал этот пост  ""категория" топосов". Потому что в этой части Мак Лейн и Мурдяк начинают систематически изучать морфизмы между топосами. И строго говоря, топосы не образуют категорию. Но можно представить себе, что образуют, чтобы лучше понимать логику науки. У топосов есть два типа морфизмов. Первые это "логические морфизмы", функторы, которые, грубо говоря, сохраняют сохраняют структуру топоса. Это похоже на то, как морфизмы определяются для многих других категорий. Но они оказываются не очень интересными. Но интересными становятся "геометрические морфизмы", второй тип. И это уже не просто функторы, а пары сопряженных функторов, левый из которых точен слева. И оказывается, что это очень естественное определение морфизмов между топосами. Во первых, любому непрерывному отображению между топологическими пространствами однозначно соответствует геометрический морфизм при некоторых условиях отделимости. Правильная ассоциация тут — это образ и прообраз. Также геометрическим морфизмом являются функтор шифификации и вложения пучков в предпучки, а также забывающий функтор и ко-свободная коалгебра. 

 Тут подход у Мак Лейна достаточно напоминает некоторые старые элементарные учебники абстрактной алгебры когда нам долго рассказывают про группы, а потом в конце вдруг выясняется, что еще бывают морфизмы между группами. У Джонстона, например, геометрические морфизмы морфизмы появляются в первой главе, и их тема развивается одновременно с темой топосов. Но учебник Джонстона можно считать очносительно более продвинутым. Потому что в 0-й главе, которую можно считать списком пререквизитов уже упоминаются n-категории и теорема Жиро, на которой Мак Лейн заканчивается. Потому Мак Лейна можно считать подготовительным текстом к Джонстону. 

 Потом авторы определяют тензорное произведение с предпучком. Это тензорное произведение не равноценное в том смысле, что правая и левая часть относятся к разным категориям. И как частный случай этой конструкции рассматривается тензорное произведение объектов топоса с действием внутренней группы. Это довольно абстрактная теория. Не буду тут долго останавливаться. 

 Тема, которая мне очень понравилась в этой главе — это геометрические вложения и сюръекции. Замечательно тут то, что можно доказать, что любой геометрический морфизм можно факторизовать через какой-нибудь топос пучков на образе. В частности это результат можно развить так, что область определения любого геометрического вложения будет эквивалентна категории предпучков на образе. В частности это значит, что любой под-топос топоса — это на самом деле какой-то топос пучков на нем. Этот результат интересен тем, что любой такой топос пучков определяется топологией Лавера-Тирни, а это по сути просто определенный модельный оператор на некоторой алгебре-логики. Потому, получается, что решетка под-топосов полностью описывается неким маленьким множеством. Похожий результат есть и для геометрических сюръекций. Только там вясняется, что образ является категорией коалгебр над областью определения. 

 При этом если смотреть на геометричесекие морфизмы как на часть категории топосов, то категория множеств SET является там терминальным объектом. То есть ведет себя примерно так же как множество с одним элементом в самой категории множеств. То есть в него из любого объекта есть только одна стрелка, но тут эта стрелка это не отображение-константа, а функтор глобальных сечений и сопряженный с ним. И по аналогии с такими стрелками в топосах, геометрические морфизмы из категории SET называют точками топосов. Эта аналогия полностью оправдана потому что, если категорию пучков на хаусдорфовом пространстве, то есть однозначное соответствие таких геометрических морфизмов и точек. Авторы разбирают структуру точек для некоторых классических примеров топосов. Например, для топоса предпучков на малой категории точки однозначно соответствуют плоским функторам, где плоскость определяется в смысле тензорного произведения определенного выше. А в случае топосов Гротендика точки — это непрерывные плоские функторы. 

 Далее, авторы пытаются дать похожее описание всем геометрическим морфизмам. И для этого они обращаются к теории фильтрованных категорий. Мне эта тема показалась слишком технической. Но полностью игнорировать ее нельзя, потому что ее результаты используется дальше. В итоге глава заканчивается на очень интригующем замечании, что топос пучков на топологическом пространстве гомотопически эквивалентен топосу вложений в это пространство. 

 Думаю, что проблему с технической сложностью последних разделов этой главы можно было бы решить чтением еше одной книги Мак Лейна "Категории для работающих математиков". Тем более в следующей главе появляются симплициальные множества. И в категориях для трудящихся про это тоже есть. Но тогда получается слишком длинное ответвление. Думаю мне подойдет такая программа: 1) решить задачки про геометрические морфизмы, игнорируя фильтрующие категории и расширения Кана 2) Читать часть с фильтруюшими категориями без доказательств 3)прочитать в другой книжке, про моноидальные категории и переходить дальше
Link125 comments|Leave a comment

Бессмысленные антуражи и квази-равномерность [May. 7th, 2024|05:28 pm]
[Tags|, , , , , , , , ]
[Current Mood | sleepy]

image9780824718398


Перед тем как переходить к новым темам, я решил, что нужно закрыть все, что осталось у Пикадо-Пультра про равномерные локали.

Метрическая структура и метризация. Тут метрика ведет себе как действительно-значная валюация элементов локали. Это типа диаметр. Поэтому можно было бы говорить не про метризацию, а диаметризацию. Меня зацепило то, что если взять в качестве локали взять алгебру вероятности, то у вероятность будет удовлетворять аксиомам диаметра. Но других хороших свойств диаметра у нее не будет ели исходное вероятность не состоит из одних атомов. Поэтому на эту тему я почти не тратил внимания.

Антуражи. Равномерную структуру придумал Андре Вейль. И в своей работе он определял ее как фильтр рефлексивных отношений, которые он называл антуражами, на множестве такой, что обратный к любому антуражу снова содержится в равномерной структуре, и что для любого антуража из структуры можно достать другой, но такой что его композиция с самим собой содержится в первом. Иногда антуражи еще называют коннекторами. Это определение без труда переносится в безточеную топологию. Но теперь антуражи, это просто элементы квадрата исходной локали, такие что элементы, квадраты которых в антураже, покрывают исходную локаль. И определения равномерной структуры получается дальше так же как у Вейля.

Отрадно, что как показывают Пикадо-Пультр антураж можно определить чисто категорным языком. Можно пойти дальше и чисто категорно определить и равномерную структуру. И это можно сделать на большом количестве разных категорий. Ив Андрэ тоже про это писал, но кажется только сейчас понял содержание этой конструкции. Ив Андрэ писал, что равномерные объекты можно задать на любой категории со степенями. Но когда речь заходит о каких-либо результатах он почему-то сразу предполагает, что мы находимся в "хорошей категории, такой как категория групп или топос". Мне кажется, что равномерные объекты имеет смысл определять для регулярных категорий. Дело в том, что в регулярных категориях можно определять отношения объектов как объекты самой категории, и они ведут себя более-менее предсказуемо. Например, отношения будут подобъектами произведений соответствующих объектов и их композиции будут оставаться подобъектами. А в произвольной "категории cо степенями" это доказать кажется нельзя, хотя можно и определить отношения.

Однако, я понял, что чисто категорное определение грубее чем-то, которое использует Пикадо-Пультр, потому что не каждый подобъект квадрата с необходимыми свойствами будет открытой подлокалью. Однако, Андрэ пишет, что такая конструкция используется в еще более диком контексте, в теории представлений, где кто-то использовал равномерные представления групп. Категория представлений групп, кстати, будет регулярной. Я также понял, что если в регулярной категории есть терминальный объект, то там можно определить и полноту с пополнением. Понятно, что единственность пополнения следует сразу из универсального свойства. А вот вопрос в каких категориях выполняется теорема про существование пополнения? Мне кажется, что оно должна существовать в топосах, куда всю конструкцию можно импортировать, используя внутренний язык топоса. Но кажется, что это не очень интересно.

Квази-равномерность. Идея тут довольно простая. Если убрать из определения равномерной структуры условия замкнутости под транспозицией, то вроде как получается более широкий класс структур. Зачем это нужно не очень понятно. Но Ив Андрэ использует именно пополнения квази-равномерностей для своих p-адических дифференциальных уравнений. Сам Ив Андрэ пишет, что квази-равномерности нельзя выразить через покрытия. Но Пультр-Туки пишут про то, что правильное обобщение определения через покрытия для квази-равномерностей это так называемые парные покрытия. То есть системы состоящие из пар множеств пересечения которых образуют покрытия. Причем квази-равномерность задает не одну, а сразу три топологии. Это так называемые правая и левая топология и их джоин. Такие объекты назывют би-топологическими пространствами или би-пространствами, а наука, которая их изучает называется асимметричной топологией. Говорят, что с помощью квази-равномерности можно задать любую топологию, что не верно для простой равномерности.

Плохо, что Пикадо-Пультр ничего не пишет про пополнения квази-равномерных пространств. Для того, чтобы разобраться с этим вопросом я достал другую книжку, посвященную чисто квази-равномерностям. И тут меня накрыло. Оказывается, что ни теоремы о единственности пополнения, ни существования для квази-равномерных пространств не выполняются. Но, кажется. они выполняются для некоторых хороших классов квази-равномерных пространств. Ив Андрэ пишет, что для локально квази-компактных пространств существует довольно простая конструкция пополнения Кюньси, которой он пользуется. Но для начала нужно разобраться с тем, что такое локальная квази-компактность.

Для многих равномерные структуры и бесточечная топология — это уже экзотика. А бесточечная квази-раваномерность и пополнения относительно нее — это уже какая-то крайняя экзотика. То есть можно представить себе, что я шел по тундре, а сейчас уперся в ледовитый океан. А нужного снаряжения, чтобы плыть на льдине у меня нет. Наверное, в таком случае стоит повернуть.
Link68 comments|Leave a comment

Бессмысленная равномерность [Apr. 24th, 2024|07:40 pm]
[Tags|, , , , , , , ]
[Current Mood | anxious]
[Current Music |Joy Division - Unknown Pleasures]

image



Я продолжал изучать бессмысленную топологию, но теперь я решил сосредоточиться на разделе, который особо меня интересует, бессмысленной равномерность. Единственный источник, по это теме, который я нашел, это учебник Пикадо-Пультра. И я сразу столкнулся с присущим ему недостатком, что параллельно развивается сразу несколько сюжетов и из-за этого начинается перегруз.

Дело в том, что за равномерные структуры являются примером феномена криптоморфизма в математики. Это выражается в том, что су шествует три очень непохожих, но эквивалентных способа ее определить на точечных пространствах. Это антуражи Вейля, то есть фильтр симметричных окрестностей диагонали Декартова квадрата, фильтры покрытий Тьюки, и семейства псевдо-метрик Избелла. И для безточечного случая авторы выбирают определение Тьюки, что в целом правильно. Но дело в том, что фильтры у Тьюки должны обладать свойством: для любого покрытие U из фильтра можно выбрать такое покрытие V из фильтра, что звездное раздутие V меньше U. Это все имеет смысл в контексте метрических пространств или топологических групп. В контексте метрический пространств это означает что-то вроде того, что любое эпсилон-покрытие можно измельчить до эпсилон/2-покрытия. А в контексте топологических групп, что любое покрытие можно измельчить так, что произведения элементы из отдельных множеств измельченного покрытия всегда попадают в одно и то же множество изначального покрытия. И это может быть удобно при доказательстве теорем. Но в более общем контексте это только мешает. Поэтому в этой книжке еще рассказывают про близостную структуру, которая похожа на равномерную, но без этого свойства. Но еще в добавок вводят слабую и сильную близостную структуру. В итог там где была одна теорема получается потенциально четыре. Но в итоге такой подход все таки оправдывал себя, как мы увидим.

Мой главный интерес к равномерным структурам сейчас вызван статьей Ивса Андре Равномерные Пучки и Дифференциальные уравнения. Поэтому из всех свойств равномерных локалей меня больше всего интересовало пополнение. Потому что следуя статье Ивса Андре от него можно перейти к равномерным пучкам и раздутием, но теперь в безточечном контексте. Как я предполагал, пополнения нужно рассматривать как подлокаль множества замкнутых снизу подмножеств (lower sets, down sets) исходной локали, замкнутых относительно отношения "равномерно покрывает". Замкнутые снизу подмножества тут это частный аналог решета (sieve). Причем, свойство Тьюки в этой конструкции нигде не используется. Поэтому пополнения можно определить и для близости. В итоге получаем полную локаль, обладающую универсальным свойством относительно плотных равномерных сюрьекций. Кажется, что свойство Тьюки все нужно для теоремы о продолжении равномерных морфизмов на пополнения, поэтому оно все же крайне желательно.

Стоит выделить два интересных класса равномерных локалей. Первый это паракомпактные локали. Паракомпактные локали определяется тем, что каждое их покрытие допускает локально-конечное измельчение. Мне кажется, что в этой книге Пикадо-Пультра допущена некоторая логическая ошибка в месте, где это понятие определяется, потому вместо того, что такое локально-конечное там определяется более сложное понятие, которое используется куда позже. Но вроде из контекста и так понятно, что имеется в виду. Паракомпаетные локали интересны тем, что для них существует простая характеризация, которой нет у паракомпактных точечных пространств. А именно то, что паракомпактность определяется наличием максимальной равномерной структуры, причем относительно ее локаль будет полна. Причем, любая локаль будет полна относительно максимальной близостной структуры, которая есть просто множество всех покрытий. Второй важный тип равномерных локалей, это предкомпактные локали. Их еще можно называть полностью ограниченными. Это те локали пополнение которых компактно. У компактных локалей, как и у пространств может быть только одна равномерная структура. Поэтому равномерную структуру предкомпактной локали можно полностью восстановить зная ее компактное пополнение.

В целом изучая книгу Пикадо-Пультра я узнал два интересных факта. Во первых у них есть альтернативная конструкция пополнения через, так называемую, компактификацию Самуэля. Эта конструкция показывает, что для настоящих равномерных локалей вместо множества замкнутых снизу подмножеств можно взять подмножество идеалов, что немного лучше. и в этом случае компактификация это как-раз множество идеалов, потому что оно компактно. И я догадывался об этом свойстве и хотел работать с идеалам, но не знал как его обосновать. Второе интересным связан с так называемыми отображениями Коши. Дело в том, что всем хорошо известно пополнение Коши. Но оказывается, что оно строго слабея равномерного отображения. Но они совпадают для случая метризуемых пространств. Но оказывается, что фильтры Коши, которые используется для пополнения Коши это частный случай отображений Коши, где в качеств ко-домена выступает булево множество {0,1}. И если вместо булева множества допустить произвольные локали, то получится как раз равномерное пополнение, о котором я писал. Не знаю в чем тут польза, но мне эта мысль почему-то показалась глубокой.

Теперь переходим к результатам моего творчества. Как раз поэтому от меня долго не было постов, что я пыхтел, сопел и пытался что-то доказать:

Короче моя идея в том, что если пополнения являются подлокалями локали замкнутых снизу подмножеств или локали идеалов, то вся информация о пополнениях должна содержаться в соответствующих нуклиях. Потому если нас интересует только пополнения, то вместо равномерных структур я предлагаю хранить всю информацию в нуклиях. Мне кажется, что это будет полезно, потому что нуклии легко обобщаются до топологий Ловера-Тирни и применяются к топосам.

Но в этом случае восстановить равномерность из нуклии нельзя, если пополнение получилось не компактным. Кажется, что максимум что мы можем сделать это построить прообраз единицы. Тогда мы получим какой-то большой фильтр, содержащий исходную равномерную структура. Кажется, что этот фильтр будет и близостной структурой и топологией Гротендика (может быть преобразован в) одновременно, но не равномерной структурой. И пополнение относительно него окажется таким же. Но опять же это не равномерная структура. Кажется из этого большого фильтра можно выбрать все нормальные покрытия, и получить новую большую равномерную структуру, включающую в себя первоначальную. Анри предпочитает решать этот вопрос беря просто прообраз всех открытых покрытий. Но кажется в его науке (p-адические дифференциальные уравнения) всегда можно обойтись предкомпактными множествами. Кажется с точки зрения локалей этот подход особенно оправдан, потому что пополнения всегда будут паракомпактными. А все покрытия паракомпактных локалей будут нормальными. То есть, мне кажется я доказал эквивалентность этих подходов для локалей исходя из логики максимальности фильтров.

Также исходя из безточечного подхода я понял еще одну вещь. Операция вложения открытых множеств в пополнение у Андре, это совершено очевидное естественное отображения, которое возникает из сопряжения функтора "пополнение" у локалей. Оно при первом чтении этой статьи немного напрягало. Но может это из-за странной нотации, открытое множество с рожками.

Самый сложный вопрос, это придумать какой-то критерий, чтобы выделять нуклии, которые соответствуют равномерным пополнениям, без прямой апелляции к равномерной структуре. Не уверен, что я здесь справился. Кажется должны выполняться следующие свойства: композиция с нуклией "объединения" это снова нуклия "объединения", то есть ничего нового не покрывается, прообразы полных покрытий обобщенных открытых множеств задают топологию Гротендика, и прообраз единицы содержит равномерную структуру какую-то. Но это все равно может быть недостаточно, и есть все-таки отсылка к равномерной структуре. Можно сделать еще жестче, сказать, что соответствующая локаль равна каком-то пополнению. Но это уже совсем нечестно.

Дальше кажется, что можно рассмотреть такую категорию локалей с нуклиями, задающими пополнения. Кажется тут должно быть интересное сопряжение. С паракомпактными локалями с одной стороны, и с равномерными локалями с другой. Композиция функоторов может вести себя как "построить пополнение и забыть равномерную структуру". То есть как композиция других функторов . И тут можно поиграть с функторами. Но я ничего конкретного тут не доказал еще.
Link147 comments|Leave a comment

Приложения бессмысленной топологии к осмысленной [Mar. 5th, 2024|10:02 pm]
[Tags|, , , , , , ]
[Current Mood | working]
[Current Music |Black Sabbath --- Mob Rules]





Я продолжал изучать бессмысленную топологию.

Спектральные пространства

В процессе обнаружилась связь этого предмета с такой темой как спектральные пространства. Тут спектральные пространства это пространства состоящие из простых идеалов решеток, топология на котором задается просто всеми идеалами. Такое пространство называется спектром решетки. Можно еще взять максимальные идеалы с топологией подмножества, и тогда получится максимальный спектр. У топологии спектров есть интересное свойство, а именно то, что она порождается открытыми компактными множествами. Это на самом деле довольно очевидно, потому что в случае спектров такими множествами будут просто главные идеалы. топологические пространства с таким свойством называются когерентными. Можно доказать, что категория когерентных локалей эквивалентна категории дистрибутивных решеток.

Основные интересные результаты, которые мне тут запомнились, это то, что решетка будет нормальной, если каждый простой идеал содержится в единственном максимальном. Нормальность этот свойство решёток, которая соответствует аксиоме отделимости T4. И еще мне запомнился критерий Нахбина, что дистрибутивная решетка будет булевой алгеброй тогда и только тогда, когда все ее простые идеалы максимальны. Я немного порассуждал о структуре нормальных решеток: На идеалах можно ввести отношения эквивалентности, что два идеала, рассмотренные как открытые множества, cовпадают в пересечении с максимальным спектром. Тогда, очевидно, каждый этот класс эквивалентности замкнут под операциями объедение и пересечение. Тогда, очевидно, что в таком классе есть максимальный элемент, объединение всех. Но если решетка была нормальной, то ее максимальный спектр будет непрерывной ретракцией простого спектра. М если взять прообраз под ретракцией, то можно получить минимальный идеал в соответствующем классе эквивалентности. Получается, что спектральная топология нормальной решетки, это большая локаль составленная из маленьких локалей в форме локали.

Для каждого такого класса можно рассмотреть элементы, которые лежат в максимальном идеале класса, но не лежат в некоторых других. Я бы по аналогии с пространствами Бэра назвал бы такие элементы тощими. Они являются преградами к тому, чтобы дистрибутивная решетка была булевой алгеброй. Можно попробовать их выкидывать в попытки превратить решетку в булеву алгебру. Я доказал, что такая операция сохраняет дизъюнкции, но не конъюнкции, а также сохраняет центральные элементы. Поэтому можно получить булеву алгебру, которая больше центра исходной решетки.

Я нашел еще относительно новую книгу, где довольно много справочной информации по спектральным пространствам. Но про Локали там появляется довольно поздно, поэтому особо читать не планирую. Но полезно знать, где по этой теме много информации. Интересно, что двое авторов занимаются действительной алгебраической геометрией, а третий теорией моделей. Это говорит о том, что связь этих спектров, со спектрами из алгебраической геометрии. А дело в том, что существует функтор, который превращает дистрибутивную решетку в коммутативное кольцо. Его придумал Джан-Карло Рота. Потому есть определенная двойственность между разными классами решеток, коммутативных колец и топологических пространств. Похоже методы, основанные на этой двойственности, не особо применяются для "красивой алгебраической геометрии" над полем C, но могут применятся для уродливой над полем R.

Компактные Хаусдорффовы Пространства


Для локалей можно определить большинство свойств топологических пространств. С компактностью всю просто. А вот с аксиомами отделимости все становится очевидней и очевидней чем они выше. Есть аналоги большинства базовых теорем и Конструкций общей топологии. Типа теоремы Тихонова и компактификации Стоуна-Чеха. Пультр и Пикадо подробно пишут про это. Но я не хочу очень сильно в это углублятся.

Джонстон использует доказанные результаты про Локали, чтобы определить дискретную компактификацию Стоуна-Чеха. А потом показывает, что этот функтор порождает категорию компактных Хаусдорффовых пространств как категорию своих алгебр. Это теорема Мэйнса. Это говорит, что категория компактных Хаусдорффовых пространств является алгебраической. То есть в любой категории с произведениями можно собрать свой объект Компактное-Хаусдорфово пространство. Грубо говоря, это будут те объекты исходной категории, где как-то можно брать пределы по ультрафильтрам, поэтому может быть совсем не похоже на обычные топологические пространства. Эта операция взятия предела, типа выбора сходящейся подпоследовательности на компакте и вычисления ее предела в элементарном анализе, только теперь это гомоморфизм. Я раньше часто натыкался на эту теорему Мэйнcа в других книгах, и решил, что это знак, что не него стоит обратить внимание. У Мэйнса, оказывается, еще была книжка про алгебраические теории.

Потом Джостон развивает успех теоремы Мэйнса и доказывает теорему Глисона. Эта теорема говорит, что проективные объекты в категории компактных хаусдорффовых пространств это крайне несвязные пространства. Через двойственность Стоуна это ведет к результату, что инъектиные объекты в категории булевых алгебр это полные булевы алгебры. Из существования минимального проективного накрытия в категории компактных хаусдорффовых пространств можно доказать, что у каждой булевой алгебры есть пополнение с универсальным свойством. Такое пополнение называется пополнением МакНила, и может быть построено после некоторой дополнительной работы для любого упорядоченного пространства.

Еще одна тема, которой касается Джонстон это Локали Виториса. Топология Виториса это топология на множестве компактов, которая обобщает топологию метрики Хаусдорффа. Если пространство хаусдорффово и компактно, то топология Виториса это то же самое, что и топология на множестве открытых множеств. Джонстон пользуется этим, чтобы синтетически сконструировать локаль Виториса, и доказывает так, что эта конструкция будет компактной и регулярной. В итоге получается эндофунктор, а на самом деле монада. И спойлер в том, что алгебрами этой монады будут т. н. непрерывные решетки.

В целом я очень доволен Джонстоном, что взялся за изучение этой темы. Мне раньше уже казалось, что большой кусок общей топологии можно построить через теорию категорий и решетки. И я наконец-то нашел книгу, где все это проделано.
Link36 comments|Leave a comment

Бессмысленная Топология [Feb. 1st, 2024|02:41 pm]
[Tags|, , , , , , ]
[Current Mood | sleepy]
[Current Music |Coil - The Ape of Naples]




Давайте расскажу вам, друзья, о своих математических штудиях. От изучения топосов, к которым надюсь скоро вернуться, я решил перейти к изучению бессмысленной (pointless) топологии. Политкорректно эту науку, конечно, называть безточечной (point-free) топологией. But I'm a free-speech absolutist!

Легко заметить, что топологии топологических пространств обладают алгебраической структурой упорядоченной решетки. Центральная идея бессмысленной топологии рассматривать не пространства с конкретными точками, а алгебраические структуры похожие на решетки открытых множеств. Как известно из теории топосов эти решетки открытых множеств всегда имеют структуру полной алгебры Гейтинга. Поэтому такие алгебраческие структуры в целом описывают как категорию полных алгебр Гейтинга, где морфизмы это отображения, сохраняющие произвольные дизъюнкции и конечные конъюнкции. Это категорию называют категорией фреймов. Сразу замечу, что эта категория будет алгебраической, поэтому можно с спокойно говорить про свободные фреймы. Двойственная к ней категория называется категорией локалей.
Так как функтор топологии, отображающий пространства в их фреймы открытых множеств контравариантный, то естественно считать именно локали настоящими бессмысленными пространствами. Важный момент, это что морфизмы Локалей задают связность Галуа между соответствующими алгебрами. Фреймы и Локали — это Гог и Магог бесмысленной топологии.

К забывающему точки функтору топологии можно построить сопряженный справа, который будет строить для локали точечное представления. Это точечное представление состоит из морфизмов фреймов из исходной алгебры в булеву {0,1}. Эта пара сопряженных функторов имеет как положено единицу и коединицу. Те топологические пространства для которых единица является гомеоморфизмом называются трезвыми. Они так намазываются, потому что, грубо-говоря, это такие пространства, где точки не очень сильно путаются. Например, любое Хаусдорфово пространство трезво. В то же время локали для которых коеденица является изоморфизмом называются пространственными. Грубо говоря, это те локали которые можно получить как топологии настоящих топологических пространств. Сопряженная пара функторов становится эквивалентностью полных подкатегорий трезвые пространства и пространственные локалей.

Но если не все локали пространственные, то откуда берутся оставшиеся локали? Оказывается, что любая локаль может стать классифицирующем объектом в гротендиковом топосе. И топосы Гротендика и Локали находятся в почти полном соответствии. Поэтому, если разобраться с какой-то проблемой или понятием для локалей, то мы разъясним его не только для топологических пространств, но и для топосов Гротендика. Поэтому тема локалей меня и заинтересовала. Например, когда я читал про топосы Гротендика у Маклейна, то меня заинтересовал вопрос, как может быть утроена равномерная структура у топоса. Но есть относительно разработанная тема с равномерными локалями (симметричными и нет), и даже метрическими локалями. А значит, разобравшись с этими темами должно все стать понятно и с равномерными локалями, и с метрическими топосами. Определенную сложность состовляет рвзвитие этих идей для элементарных топосов, которые не являются Гротендиковыми. Но тут нужно применять креативное мышление.

Очень интересный вопрос, что такое подлокали локалей. Из двойствености следует, что это что-то вроде фактор-пространств фреймов. Но интересно, что подлокали находятся в полном соответствии с особым классом операторов, действующих на локаль, которые называются нуклиями. Эти операторы являются идемпотентами, и монотонными инфляторами, сохроняюшими конечные конъюнкции. Удивительно, но множество всех нуклий само является фреймом и Локалью. И сопоставление локали с ее множеством нуклей задает функтор. С помощью этих нуклей можно легко показать, что любой фрейм вкладывается в полную булеву алгебру. Канонические нуклии это булинизатор neg neg, а также каждый элемент локали задает свою замкнутую и открытую нуклию, которые являются комплементарными. В целом нуклии это уже знакомые нам топологии Ловера-Тирни для топосов. Поэтому, получается, что подлокали в чем-то эквивалентны подкатегориям пучков.

Есть еще преднуклии, которые не являются идемпотентами. но с помощью трансфинитного процесса их можно превратить в нукллии. Если нуклии соответствуют топологиям Ловера-Тирни, то интересно, чему соответствуют преднуклии в теории топосов? На этот счет есть статья иранских товарищей про слабые топологии Ловера-Тирни. Но я сейчас не хочу туда углубляться.

Есть еще такая крутая тема как локали измеримых множеств. Ее придумал Дмитрий Павлов. Оказывается, что полные булевы алгебры, которые получаются из алгебр меры полностью вкладываются в категорию фреймов. Поэтому, получается, что на бесточеном уровне все понятия связанные с измеримостью оказываются частным случаем топологических. Тема алгебр меры довольно старая. Ей занимались еще Фон Нейман, Стоун и Махарам. Интересно, было бы покапать, что получится если там осознано использовать идеи из теории локалей.

Расскажу про Книжки:

Stone Spaces Джонстона — это самый главный труд в этой области. Джонстон сам почти всю эту науку и придумал. Я долгое не время не мог понять из названия про что она. Но она оказалась не столько про каменные пространства, сколько про бессмысленную топологию. По содержанию это просто гераклитов огонь. Тяжело читать, но оно того стоит. Каждая странница это горы мудрости. Из пререквизитов нужно хорошее знание общей топологии, алгебры и знакомство с теорией категорий вплоть до монад. ЭТО книга 1980 года, достаточно пожилая. Поэтому, не смотря на глубину, я не уверен, что подбор тем достаточно актуален. Некоторые из них кажется достаточно эзотерчными. И учитывая трудоемкость, я не думаю, что освою ее целиком. Тем не менее тут есть интересные темы вроде спектров Зарисского и двойствености Гельфанда. И я планирую дочитать хотя бы до них.

Frames and Locales: Это более современная книжка 2012 года. К сожалению не дотягивает до уровня джонстона не педогогически, не по концептуальном уровне. К сожалению, авторы часто отступают от теоретико-категорных принципов, поэтому не смотря на то, что текст более новый он читается как что-то времен Гильберта. Это все, скорее всего сделано, для повышения доступности. Но, на самом деле, они просто нагородили много нотации, так что эту книгу очень сложно читать не линейно. Тем не менее тут довольно много результатов, и тут много материала про равномерные локали, который меня интересует. Поэтому тоже будем ознакамливаться.


Topology via Logic Викерса: А это уже совсем концептуальная вещь. Тут так много сложной математики, потому ее, наверное можно просто прочитать. Зато тут много прикольных иллюстраций и есть про приложения в сomputert science. Грубо говоря, идея автора в том, что топология это особый тип логики, приспособленный для описания конечного числа эмперических наблюдений. По идеи это должно привести к пониманию открытых множеств как полу-вычислимых предикатов. Я как-то писал об этой идеи ссылаясь на пересказ пересказа Джета Неструева. Теперь будет возможность разобраться с этой идеей из первых рук.
Link28 comments|Leave a comment

Элементарные топосы, монады и комонады [Dec. 21st, 2023|03:02 am]
[Tags|, , , , , , , ]
[Current Mood | drained]
[Current Music |Stolen Babies - Naught]




Хотя, я давно не писал об этой части своей жизни, я продолжал изучать теорию топосов. Как видно из названия поста в этот я р решил поделиться своими успехами в изучении элементарных топосов. А именно потому, что именно эта тема раскрывается в 4-й и 5-й главе книги "Пучки в геометрии и логики" и поэтому я решил объединить их в один пост. Также я дополнительно прочитал главу про монаду в книге "категории для работающих математиков", потому что тут они начинают активно использовать. И хотя в книге про топосы все необходимые факты про монады тоже даются. Но во второй тут мне изложение показалась более педагогичным. Вообще, ее проще читать и она лучше написан, потому что в книги про топосы упражнения идут после очень длинных глав, и когда до них дойдешь, то тратить на них время уже не хочется. А вот книге про категории упражнения после каждой короткой секции. И на будущее, если будете писать учебники по математики, знайте, что второй вариант лучше усваивается. Я делаю это отступление, потому что, когда я учил теорию категорий и дошел до монад и комонад, мне эта тема показалась какой-то муторной и немотивированной. И я остановился. Ну чтож, теперь у меня мотивация разобраться с ними появилась. Еще скажу, что я уже встречался с алгебрами и коалгебрами а контексте абстрактной алгебры. Поэтому у меня есть предвзятость, что структура алгебры должна отображатьс алгебраические свойства объекта, а коалгебры — комбинаторные. И это могла повлиять на мой выбор примеров. Но реальность, конечно, сложней.

напомню, что Мак Лейн уже определил в первой главе элементарные топосы как категории конечно би-полные, обладающие экспоненциальными объектами и классификатором подобъектом. Но в червертой главе Мак Лейн совершает резкий поворот. Он рассматривает класс категорий, обладающих чем-то вроде внутренней теории множеств. Наличие этой внутренний теории множеств выводится из конечной полоны, наличия особого объекта "множество значениий истиности" Омега, и функтора P cопряженного с умножением на Омегу. Конечно, все элементарные топосы, и топосы Гротендика в частности, обладают внутренней теорий множеств! Поэтому говорят, что топосы это категории похожие на категорию множеств.

Такое описание топосов привело к мнению, распространяемого многими знаменитыми логиками(Белл, Голдблат), что целью теории топосов была аксиоматизация теории множеств. Но как показывает МакЛарти в своей статье "Use and Abuse of History of Topos Theory", это мнение глубоко ошибочно. Дело в том, что создателями теории элементарных топосов были Лавер и Тирни. И подходили они к этому делу не как логики, а как физики, потому что изначально они были именно физиками. И главной их целью было создать основания математической физики, свободные от теории множеств. МакЛарти пишет, что работа над элементарными Топосами началась с целью создания нового курса по топологической динамика. Поэтому апофеозом программы Лавера-Тирни нужно считать не результаты вокруг теории множеств, а синтетическую дифференциальную геометрию. Однако первые значительные результаты по синтетической дифференциальной геометрии относятся к 80-м годам, а описанный выше результат про теорию множеств относится к 60-м, и именно тогда логики заинтересовались топосами. Поэтому мы имеем дело со своеобразным академическим эффектом утенка.

Что же касается самой внутреней теории множеств, то она постепенно собирается из элементарных операций теоретико-категорных операций. При этом, само собой, все внутренние множества оказываются объектами исходной категории. Этот процесс мне очень напомнил начала теории вычислений, когда все возможные вычислимые функции, собирались из нескольких базовых операций. Или аксиоматичесеой теории множеств. Только тут вместо операций типа взятия инкремента или использования формулы для построения подмножества, за базовые операции берется построение конечных предельных объектов и и использование сопряженности функтора P. Поэтому нет ничего удивительного в том, что если взять эти операции вычислимыми, то мы получим теорию вычислимых объектов. На этой идеи стоят рекурсивный и эффективный топос, которые, кстати, являются примерами элементарных топосов не являющихся топосоми Гротендика. Но Мак Лейн о них не упоминает, поэтому я расскажу о них подробней как-нибудь в другой раз, когда напишу пост про синтетическую теорию вычислений.

Основным ингредиентом в доказательстве того, что любая категория с внутренней теорией множеств — элементарный топос, играет теорема Бека про монады. Вначале расскажу вам, что такое монады. Монада T на категории С это эндофунктор (T : C -> C), снабженные двумя натуральными трансформациями, умножением мю : T^2 -> T и единицей эта : id -> T. Комонада, это структура двойственная к монаде, где поворотом стрелок имеем ко-умножение дельта T -> T^2 и ко-единицу эпсилон T -> id. Наверное самым интересной фишкой монад является то, что каждой монаде T cоответствует целая категория T-алгебр. Но T-алгебры это не совсем алгебры в смысле абстрактной алгебры, а объекты категории C, например X, cнабженные структурными отображениями h : TX -> X, определенным образом взаимодействующие с морфизмами мю_X и эта_X. Для комонады T поворотом стрелок определяется аналогичная категория T-коалгебр.

Каноническим примером монады является монада List из программирования, которая сопостваляет множествам множества списков из их элементов, а отображениям отображения, действующая на списки поэлементно. Операцией мю в этой монаде является конкатенация списка списков, а единица эта — это создание списка из одного элемента. List-Алгебры это обычные алгебраические моноиды, то есть множества с одной ассоциативной операцией и единицей. Не знаю, какой пример комонады самый канонический. Но можно придумать комонаду на категории SET максимально похожую на List, назовём ее Str. Функтор Str cопоставляет множеству множество непустых cтрок из элементов этого множество. То есть, теперь Str(emptyset) = emptyset. А отображения этот функтор снова вычисляет поэлементно. Тогда ко-умножение это операция которая преобразует строку в строку правых хвостов, а ко-единица эпсилон возвращает первый элемент, голову. Str-коалгебры это леса из направленных деревьев с корнем, а их структурное отображения это операция "путь к корню". Интересней было бы получить категорию коалгебр деревьев, а не лесов. Этого можно добиться, например, так. Модифицируем комонаду Str как Str' для категории множеств с отмеченной точкой так, что Str'(X,x) это множество строк из элементов X не содержащих x. А отображения действуют поэлементно, но выбрасывают образы тех элементов, которые перешли в отмеченную точку.
Тогда операции определяются аналогично, но коединица от пустой строки это отмеченная точка. Тогда полученная категория Str'-коалгебр это действительно направленные деревья с корнем-отмеченной точкой. В этой конструкцию это точку можно интерпретировать как особый символ, типа конец строки '\0' в C. Другой интересный пример комонады не связанный с программированием это комонада джетов в синтетической дифференциальной геометрии. И Джет-коалгебры можно интерпретировать как категорию дифференциальных уравнений в частных производных.

При этом каждой категории T-алгебр (T-коалгебр) можно сопоставить пару сопряженных функторов, состоящих из очевидного забывающего функтора и функтора свободной T-алгебры (ко-свободной T-коалгебры) на элементе. А каждому сопряжению функторов соответствует монада и комонада. В итоге получается бесконечный круговорот концепций (ко)монада-(ко)алгебра-сопряжение в природе. В итоге возникает вопрос: какие в этом цикле неподвижные точки? Грубо говоря, сопряженные функторы, которые изоморфны забывающим из своих алгебр называются монадическими. Теорема Бека как раз дает условия для монадичности функтора. Но, когда люди говорят об этой теореме, надо учитывать, что у нее есть много версий: cлабая теорема Бека, грубая теорема Бека, вульгарная теорема Бека. И тут легко запутаться. МакЛейн как раз применяет слабую теорему Бека, что доказать слабую монадичность функтора P в категории с внутренний теорией множеств. А потом он использует эту монадичность, чтобы доказать, что такие категории являются элементарными топосами. Другая важная теорема в этом разделе это теорема Эйленберга-Мура. Она говорит, что если комонада и монада сопряжены друг-к-другу то их категории алгебр и коалгбр изоморфны. Все алгебраические категории (в смысле универсальной алгебры) являются алгебрами монад. Интересно, что категория компактных-топологических пространств тоже является категорией бета-алгебр, где бетой я обозначил функтор получаемый из компактификации Стоуна-Чеха, применяемой к множествам как-будто у них дискретная топология. Это интересный результат, потому что получается, что компактные Хаусдорфовы пространства похожи на алгебраические категории.

Давайте плавно вернемся к элементарным топосам. В результате акробатики с внутренней теорий множеств получается, что каждому топосу соответствуют целых две логики, а точнее алгебры Гетинга. Внешняя логика это алгебра подобъектов терминального объекта 1 в топосе, а внутренняя логика возникает на объекте-классификаторе подобъектов Омега, взятом как внутренняя алгебра Гейтинга. Вроде как эти логики должны быть изоморфными. Но внешняя логика для работы с ней требует внешней теории множеств, в то время как внутренняя не требует и может быть использована для построения математических теорий "под ключ". Так вот, если взять на внутренней алгебре-логики идемпотентный эндоморфизм, или модальность, j, cохраняющий конъюнкции и значения истинности, то мы можем получить оператор замыкания подобъектов в топосе. Поэтому получается, что мы как-бы вводим топологию на топосе, а морфизм j называется топологией Ловера-Тирни. Благодаря топологи Ловера-Тирни можно говорить о замкнутых или плотных подобъектах. Объекты топоса, для которых вложения любых плотных объектов индуцируют биекции между множествами морфизмов, называются пучками. И да, категория пучков над топосом снова будет топосом. И ее внутренняя аглгебра-логика будет состоять как бы из неподвижных элементов j (эквалайзер j и id). Только в отличии от случая с ситусами это будет не какая-то большая новая конструкция, а наоборот, подкатегория. В этой конструкции функтор шифификации это просто функтор сопряженный к функтору вложения подкатегорий.

Кстати, о ситусах. Довольно ожидаемо, но каждая топология Гротендика на ситусе задает топологию Ловера-Тирни на предпучках этого ситуса, так что в результате пучки для этих топологий совпадает. И аналогичное верно в обратную сторону. Другой довольно простой пример топологии Ловера-Тирни, который всегда под рукой это топология двойного отрицания neg neg. Фишка neg neg в том, что она превращает алгебру Гетенга наибольшую содержащуюся в ней булеву алгебра, также известную как алгебра регулярных элементов. И таким образом, строя для neg neg топос пучков можно получить "наибольший" булевый топос содержащийся в исходном. Например если взять пучки, на топологическом пространстве, то их внутренняя алгебра-логика в общем случае будет не-булевой и это будет алгебра открытых множеств исходного пространства.

Если ввести на пучках топологию Ловера-Тирни с помощью двойного отрицания, то можно построит топос пучков-пучков, внутренняя алгебра-логики которого будет булевой алгеброй открытых областей в терминологии Энгелькинга (регулярных открытых множеств), хорошо известная нам (мне!) по конструированию примеров в дескриптивной теории множеств и теории меры.
Я могу предложить, например такой пример: исходное пространство Евклидова, тогда гладкие функции это подпучек непрерывных. В этой топологии Ловера-Тирни замыкание гладких функций это множество непрерывных функций непрерывно дифференцируемых на открытом плотном множестве . То есть гладкие функции не замкнуты. Но гладкие функции плотны в гладких и почти везде дифференцируемых. И если мы возмем пучок-пучок, то любое отображение туда из гладких функций однозначно продолжается до отображения из почти-гладких функций. Как описать такие пучки-пучки, при том, что гладкость тут можно заменять на любое свойство? Я думаю, что получается что-то вроде модальности "почти везде".

Также Мак Лейн приводит другие способы конструировать топосы. Например, объекты топоса, на который действует внутренняя категория это всего топос. Вместо того, чтобы долго распинаться приведу пример. Например можно взять категорию топологических пространств. Тогда внутренняя категория это пара объектов: объект объектов и объект морфизмов. В категории топологических пространств можно взять объектом объектов произвольное топологическое пространство X, а объектом морфизмов пространство путей в X. Тогда начало и конец пути это соответственно домен и кодомен морфизма, и есть очевидные и композии и тождественный морфизм — константа. Это типа шаг к построению фундаментального группоида. А объекты на которые действует эта категория можно представлять как расслоения над X или этальное пространство. А действие этой категории это будет как движение вдоль пути в слои. Чтобы понять, что такое действие не тривиально, можно взять как X окружность, и представить, что мы действуем ей на спираль. Тогда в зависимости от ориентации движения (которые всегда можно описать как повернуть на t градусов) по окружности мы буде двигаться вверх или вниз. Проблемы с этим примером в том, что категории топологических пространств обычно не топосы.

В целом я не получил большого удовлетворения от чтения этих глав. Тут много работы и маленьких доказательств связанных с внутренней теории множеств топоса. Но интересных результатов не очень много, и большинство из них это версии тривиальных фактов из теории множеств для топосов. Еще тут очень мало примеров. Раньше я хвалил МакЛейна за обилие интересных примеров. Но теперь все примеры приходится придумывать мен самому. Например, в конце тут есть теорема что коалгебры над топосом будут топосом если команада сохраняет конечные пределы. Я уже обрадовался, что моя категория Str-коалгебр будет топосом. А я обрадовался, потому что топос деревьев это что-то нетривиальное. Но потом оказалось, что этой конструкцией пользоваться нельзя, потому что функтор Str не сохраняет конечные пределы. Но потом оказалось, что Str-коалгбры все же топос, но потому что это типа предпучки над ситусом из натуральных чисел. И каких-то примеров применения конструкций тут нет. Из нетривиальных фактов я смог использовать этот результат и теорему Эйленберга-Мура, чтобы доказать, что у монады List нет левого сопряженного функтора. Но может больше примеров будет в следующих главах. Потому что пока почти-что территория теории множеств, Ловера и Тирни. Может дальше будут больше интересных примеров, например торсоры. Но может быть я просто устал от стиля Мак Лейна. И я как раз достиг экватора его книге про топосы. Поэтому я думаю пока переключиться на смежную тему. Но у МакЛ ейну я обязательно вернусь.
Link11 comments|Leave a comment

Scanner Darkly [Dec. 17th, 2023|10:06 pm]
[Tags|, , , , , , ]
[Current Mood | curious]
[Current Music |Свободное Радио Альбемута ]



Первая публикация 1977 год.


На мой взгляд, это один из самых интересных романов Филиппа Дика. В нем очень много автобиографического, потому что он основан на опыте жизни самого Дика с наркоманами в начале 70-х. Поэтому может показаться, что тут знаменитый писатель фантаст вступает на территорию Баяна Ширяева. Но тут есть один момент.

Формально действие романа происходит в будущем. Но там нет ни летающих машин, ни андроидов. Главный герой Боб Арктор живет с группой забавных персонажей, с которыми его объединяет общий интерес к наркотикам. Главный интерес Боба Арктора это некий выдуманный наркотик субстанция D или просто Death (смерть). Но Боб Арктор не так уж прост. Он является агентом нарко-полиции под прикрытием. В участке и других официальных мероприятиях такие агенты носят костюм-болтушку, которая скрывает их личность. Скрывать свою личность от других полицейских тоже очень важно, потому что в полицейском участке тоже есть внедренцы, но уже из синдиката, которые продают наркотики. И они не упустят возможности убрать крота. Когда Арктор выступает в полиции он использует другую личность Фреда. Все это уже напоминает раздвоение личности.

И воспользовавшись своей двойственной позицией Фред узнает, что кто-то стучит на Боба Арктора, приняв деньги поступающие от полицейской работы за доходы от торговли наркотиками. Фред/Боб решает поймать стукача. И для этого он, воспользовавшимся своим влиянием среди полиции, он устанавливает у себя в доме голографические сканнеры, которые работают как камеры наблюдения, только снимают трехмерное видео. Теперь Арктору приходится и вести себя на сканнерах так, как будто он о них не знает. И это все только усиливает раскол разума.

Эти сканнеры значительная часть роман. Фред регулярно обсуждает полученные записи со своим начальством. Но большая часть записанного это бессмысленные наркоманские телеги. Тут видимо идет высмеивания государств тотального полицейского контроля. Можно устроить тотальную слежку за всеми. Но тогда кто-то будет это разбирать. И разбирать он будет и за самими собой. И большая часть собранных записей будет лютым бредом. В итоге все агенты режима сами сойдут с ума.

Но есть в сканнерах и более глубокий смысл. Хотя бы стоит отметить то, что название романа это отсылка к цитате святого Павла: "For now we see through a glass, darkly; but then face to face: now I know in part; but then shall I know even as also I am known.". Что иногда переводят на русский язык как "Теперь мы видим как бы сквозь тусклое стекло, гадательно, тогда же лицом к лицу; теперь знаю я отчасти, а тогда познаю, подобно как я познан.". Только тут вместо стекла сканнеры. Грубо говоря, я понимаю этот момент так, что в какой-то ключевой момент типа второго пришествия Христа, люди получат полную информацию по всем вопросам, хотя сейчас доступны только частично. Причем, один из наркоманов отмечает, что во времена апостола Павла стекла еще не было. А значит в цитате речь идет об отражении в мутной воде или металлической поверхности.

Мне кажется тут такой ключевой момент наступает в 13 главе. Дело в том, что Фреду приходится ходить к полицейскому психологу, чтобы оценить урон мозгу, который наносят наркотики. И тут внезапно они начинают говорить о... топологии. Потому что голо-записи, которые создают сканнеры это как бы четырехмерное пространство время. А главный герой находится как-бы внутри и снаружи одновременно. А нахождение снаружи тут для Филипа Дика это как нахождения на точке в бесконечности. И в результате происходит перекручивание типа зеркальной симметрии и пространство-время оказывается не-ориентируемым 4-х мерным многообразием. Филип Дик говорит на простом интуитивном языке, но я могу почувствовать, что за этим стоят конкретные математические идеи. Все это относится и ко второму пришествию Христа, которое на самом деле первое, но перекрученное. Все это очень глубоко и интересно. Филип Дик часто упоминает тут зацикленные ленты проигрывателей, чтобы описать свою реальность. Мне все это напоминает нарезанные ленты Берроуза. И реальность у Алана Мура как 4-х мерный Тор. А Филиппа Дика это компактная не ориентируемая поверхность.

В целом мультфильм 2006 года очень близок к книге. Может какие-то острые углы там сглажены. Не помню, правда, есть ли в мультфильме про топологию.
Link15 comments|Leave a comment

Про Пучки [Sep. 8th, 2023|09:03 pm]
[Tags|, , , , , , , ]
[Current Mood | sleepy]
[Current Music |Conker's Bad Fur Day]

Я писал тут недавно, что перехожу к теории топосов. Как я уже писал в том посте я продвигаюсь вперед ужасно медленно. Но это объясняется неизвестным вам причинами. Как я писал я выбрал для себя учебник Saunders Mac Lane , Ieke Moerdijk; Sheaves in Geometry and Logic : A First Introduction to Topos Theory.



В целом познание теории топосов широкой публикой осложняется тем, что существуют два дополняющих друг-друга определения топоса. Это топос Гротендика и элементарные топосы Лоури. Но если говорить популярно, то топосы это такие математические вселенные в которых возможны всевозможные конструкции. Так как определение топоса Гротендика опирается на концепт категории пучка, МакЛейн начинает свое изложение с понятия пучка над топологискими пространствами. И я пишу этот пост после освоения двух первых глав, перед переходам к настоящим, абстрактным топосам.

Из пререквизотов, для освоения этого материала вам понадобятся только знание начал общей топологии и абстрактной алгебры. МакЛейн кратко излагает основы теории категорий в самом начале. Но мне это ведение не понадобилось, потому я его не читал и ничего сказать про его достаточность не могу. Во всяком случае тут теория категорий это основное топливо. Все понятия из математической логики тут вводятся в процессе изложения. Однако предварительное знакомство с ней все же будет полезно, а также знакомство с дифференциально геометрией, алгебраической топологией и комплексным анализом. Потому что тут очень много примеров, которые теоретически можно пропустить. Но если все же потратить время на все эти примеры, это сделает опыт чтения ярче. Обилие примеров это одна из черт стиля МакЛейна. Другой, я бы назвал то, что не закапывается слишком глубоко в детали. Поэтому не раз я чувствовал желания написать какой-нибудь фрагмент доказательства или нарисовать коммутативную диаграмму. Но меня такой стиль вполне устраивает. Чего тут нет, так это гомологий в пучках. Если вам интересна эта тема, то придется читать другие книги. Кстати, Джонстон, который мне показался слишком сложным, как мне кажется показался слишком сложным, возможно, касается этой темы.

Первую главу сложно однозначно характеризовать однозначно. Но там тоже объясняются всякие предварительные понятия полезные для определения топосов. В целом, я уже знал большую их их часть, но тут более систематический подход с пулбэкам. Поэтому это мне было полезно. Тут, наверное, главное понятие это предпучки на категории. Предпучки это просто контравариантные функторы из малой категории в категорию множеств.

Другое интересное понятие тут это классификатор подобъектов. Он позволяет описать множество подобъектов любого объекта как множество морфизмов в этот классификатор. В категории множеств этот классификатор это бинарная булева алгебра {0,1}. Но благодаря теории булево-злачных моделей мы знаем, как построить похожую би-полную категорию с классификатором — любой булевой алгеброй B. У МакЛейна есть интересная интерпретация сложных классификаторов как путей к истине. В в случае категории предпучков эти пути к истине образуют решета морфизмов в базовой категории. Меня задел момент, когда МакЛейн писал, что в классических алгебраических категориях не может классификатора подобъектов. Потому что такой классификатор должен содержать в себе изоморфную копию, любого объекта этой категории. Например, это могла бы быть группа, содержащая в себе все группы. И конечно, такого не бывает. Но с этой задачей могла бы справиться модель-монстр теории групп из теории моделей. Она, конечно, не была бы множеством. Но если придумать другое определение категорий и топосов, чтобы можно было использовать два типа объектов, например, группы-классы и группы-множества. Причем переделать все универсальны кванторы только по группам-множествам, а все экзистенциональные кванторы, и по группам множествам, и группам классов. И тогда модель-монстр можно использовать как классификатор подобъектов. И эти классические алгебраические категории тоже будут элементарные топосами.

Грубо говоря, элементарные топосы это категории со всеми конечными пределами и копредалами, экспоненциальными объектами и классификатором подобъектов. Интересно, что в элементарном топосе множество подобъектов подобъектов образуют алгебру Гетинга. И сам классификатор подобъектов является объектом-алгеброй Гетинга в унивресальном смысле. Потому каждый элементарный топос обладает собственной внутренней, возможно неклассической, логикой.

Вторая глава тут собственно про пучки. Но только про пучки на топологических пространствах. Пучки это предпучки на категории открытых множеств топологического пространства для которых выполняется лемма о склеивание. Конечно, эти пучки являются элементарными топосами. И их классификаторы подобъектов это открытые множества исходного подпространства. Поэтому опять же открытые множества образуют алгебру Гетинга. Любая алгебра Гетинга, а значит любая (не)классическая логика, может быть реализована как алгебра открытых множеств некоторого топологического пространства. Это должно быть пространство Стоуна, этой алгебры. Но мы тут забегаем вперед. У Манина мы еще видели пучки вычислимых функций на рекурсивно заданных множествах. Поэтому видов пучков должно быть намного больше че только топологические пространства.

По моим ощущением, главная теорема этой главы, это результат про эквивалентность пучков и этальных пространств. Этальные пространства над X это топологические пространства снабженные локальным гомеоморфизмы снабженные локальным гомеоморфизмом в X. Это делает этальные пространства обобщениям накрытия из алгебраической топологии. Также как и накрытия они обладают некоторой связью с теорией Галуа, и позволяют переходить к т. н. этальным группам пространства. Но это тоже уже немного забегаю вперед. МакЛейн использует совершено потрясающую аналогию для разъяснения этой связи. Я чуть не упал со стула от смеха, когда это увидел. Он пишет, что про слои Этального пространства можно думать как про шашлык. И у накрытия это будет ровный и аккуратный шашлык из одинаковых кусочков. А у этального пространства на одном шампуре могут быть куски разного размера, и овощи. И почти что определение тут:

image

Так вот, сегодня мы узнали, что бывают математические вселенные, которые состоят из шашлыка. Живите с этим.
Link13 comments|Leave a comment

Равномерные пространства и топологические группы [Feb. 11th, 2022|09:50 pm]
[Tags|, , , , , , ]
[Current Mood | working]
[Current Music |Hidious of Strength]

В своем изучении дескриптивной теории множеств я временно отступил на территорию топологических групп. Дело в том, что я уже изучал эту тему, но когда дошел до польских групп, то понял, что мои конспекты совсем в неудовлетворительном состоянии. И решил совершить регресс.

Равномерные пространства это такая штука, которую придумал Бурбаки, чтобы все ахуели прост. Потому что все раньше думали, что многие фундаментальные конструкции нуждается в метрики, а метрика нуждается в действительных числах. Поэтому казалось, что у действительных чисел особый универсальный статус. А Бурбаки предложил, такую структуру, обобщающую понятие метрики, но выраженная чисто в теоретико-множественном языке без каких-либо отсылок к действительным числам, но со всеми конструкциями. Основная польза от изучения этого это доступ более простом или интересному, кому как, подходу для работы с теми же самыми топологическими группами, векторными пространствами, алгебрами и так далее. Но в действительности от этого подхода всегда можно отойти по желанию. Те кому Бурбаки нравятся его юзает, а те кому не нравятся не юзают. Например Гротендик в своей книги про топологические векторные пространства — его юзает, а Понтрягин в книге Непрерывные Группы — не юзает. Если не изучать всю эту топологическую алгебру то особого смысла в нем и нет.

А зачем изучать всю это топологическую алгебру? Конечно, хорошее знание этой теории упрощает изучение групп и алгебр Ли, унтарных групп Гильбертовых пространств и баннаховых алгебр и других тем, где сами топологические группы появляются естественно, хотя и не являются объектами центрального интереса. Однако какие темы требуют углубленного изучения топологических групп? Изначально эта тема развивалась в контексте решения пятой проблемы Гильберта. Смотри работы того же Понтрягина. При решении этой проблемы развилась теория представления локально-компактных групп с помощью меры Хаара. Решать это проблему по еще одному кругу, наверное, не нужно, но из ее решения вышел абстрактный гармонический анализ. Пятая проблема утверждает, что любую конечномерную непрерывную топологическою группу можно исследовать как группу Ли. Поэтому более абстрактная теория может быть полезна в гармоническом анализе если использовать бесконечномерные или неархимедова группы, например. Не знаю, насколько эта тема сейчас актуальна для исследований. Еще люди изучают кардинальные функции и бесконечномерную динамику. Но, Меня лично в большей степени интересует инвариантная дескриптивная теория множеств, где активно используются польские группы, и грубая геометрия этих самых топологических групп.

Как базовую книжку, как и а прошлый раз, я использовал A. Willansky "Topology for Analysis". Она совсем простая и понятная и там много простых упражнений. Но многих более сложных и серьезных тем там нет. Поэтому я обратил внимание на книгу малоизвестного американского математика W. Page "Topological Uniform Structures". Написана она как раз с прицелом на абстрактный гармонический анализ, поэтому там много относительно интересных тем, включая теория представлений групп и свободные топологические группы. Однако написано она c большим количеством странных авторских обозначений, делающих изложение очень компактным, но требующего больших усилий для понимания. Противопоставить этой книге можно другую книгу с похожим названием Roelcke W. ; Dierolf S. "Uniform Structures on Topological Groups and their quuotients". Тут немцы постарались изложить все максимально понятно, но конечная цель этой книги, изучение почти метризуемых и полных по Чеху групп. А для меня это экзотика, экзотика. Однако на эту книгу стоит обратить внимание еще и вот почему. Судя по всему у Рёлке понимание смысла равномерности топологической группы значительно опережало современников, так как на его конструкции ссылаются и в современной книжке по грубой геометрии.

Можно обратиться и к классике, к Бурбакам, топология 1 у них, кажется, но я этого не делал. Если же вы ненавидите Бурбаков или читаете только по-русски, то можно взять русскоязычную книгу Понтрягина, там никаких равномерных пространств не будет. У Понтрягина книга написана довольно устаревшим языком, но при этом довольно понятная и хорошо читается. Крутится она вокруг пятой проблемы Гильберта, поэтому большое внимание там уделяется проблемам теории представлений и группам Ли. Есть еще энциклопедический труд Архангелского и Ткаченко, но он доступен только на английском и равномерности там все же есть. Поэтому полной победы НАШИХ над клятыми бурбакистами не получилось. Там много топологической экзотики, поэтому я его не читал.

А топологические группы это именно раздел не алгебры или топологии, а именно анализа.

Особо подробно рассказывать про результаты не буду. Но вот, например один, который меня заинтересовал. Это теорема Успенского про то, что любая польская группа изоморфна какой-то подгруппе группы гомеоморфизмов куба Гильберта. Эта теорема доказывается с ссылкой на теорему Келлера о том, что все компактные выпуклые тела в слабой топологии со звездочкой изоморфны кубу гильберта. Интересно, что в 1993 году Агеев опубликовал "топологическое" доказательство теоремы Келлера основанное на теории представлений унитарной группы гильбертова пространства или топологической группы похожей на нее. Отсюда идея придумать некий миникурс, который начинался бы с общей теории представлений топологических групп, потом переходил к представлению унитарной группы, оттуда шло доказательство Агеева теоремы Келлера (понадобиться еще выпуклая геометрия в бесконечномерье), и оттуда уже шла бы теорема Успенского, с возможными крутыми приложениями. Тут главный вопрос не возникнет ли при этом закольцованность аргументов?
Link17 comments|Leave a comment

Дескриптивная теория множеств 1: введение [Jan. 1st, 2022|03:50 am]
[Tags|, , ]
[Current Mood | distressed]
[Current Music |Frank Tovey - Civilian]

Как я уже писал, я собирался заняться дескриптивной теорией множеств. Для того, чтобы не заставлять ждать возлюбленных читателей cлишком долго и не увеличивать размер поста сверх меры, я решил разбить все на три части. Да еще и с возможными интерлюдиями.

Так вот, дескриптивная теория множеств занимается иерархиями множеств, где место определяется сложностью определений. Все началось с молодых и красивых французских аналитиков, которые пытались поставить анализ на рельсы теории множеств. Одной из задач у них было определить максимальное множеств функции значимое для анализа, то есть содержащее все непрерывные и замкнутое под операцией поточечного предела. Лебег считал, что он решил эту задачу, но он ошибся приняв за очевидное, что проекция измеримого множества будет измеримой. Эту ошибку обнаружил в 1917 вундеркинд Суслин, воспитанник Лузитании. Он же и начал изучать иерархию множеств, получаемую из открытых путем последовательного применения операций счетного пересечения, отображения, и применения непрерывных функций, где число нетривиальных применений этих операций определяло место в иерархии. Потом Суслин умер, но изучение иерархии продолжилось в той же Лузитании, силами уже новых молодых-красивых французских аналитиков и во вскоре возникшей львовской математической школе.

Если следовать инертности мышления, то можно предположить, что дескриптивная теория множеств относится к теории множеств. НО по моим ощущениям, и по той причине, что все основные ее понятия имеют обще-топологическую природу я бы отнес ее именно к общей топологии. Из пререквизитов тут как раз требуется хорошее знание общей топологии и ординалов. Еще хорошо знать, но не обязательно булевы алгебры, о которых я писал в прошлый раз. А также для более продвинут современных разделов все таки полезно хорошее знакомство с мат. логикой, но я туда глубоко заходить не буду.

Из учебников я для себя выбрал Kechris "Classical Descritive Set Theorty". На Русском языке есть книга "Современная Теория Множеств" Кановей,Любецкий. Она покрывает примерно те же темы, что и Кехрис, но я предпочел Кехрис, потому что он намного раньше вводит в повествование игры и группы, а именно эти темы мне особенно интересны. Есть еще совсем короткая книга Окстоби "Мера и Категория", и возможно это сам оптимальный путь освоения базовых тем, но кажется чего-то интересного там все же нет. Еще есть Мошевакис, просто "Decreptive set theory". Эта книга мне как-раз показалась более сложной, где требуется хорошее знание матлогики. Кехрис, которого я и читаю, отличается довольно легким стилем изложения, где многие занудные топологические или теоретико-множественные выкладки заменяются ссылкой на очевидность. Есть там и упражнения, но их не очень много и он не сложные, но подходят для закрепления материала.

Так вот начинается все с определения бесконечных деревьев. Причем, они определяются не как в теории графов как подмножеств конечных списков замкнутые по включению. Интересно, что если дерево не имеет висячих вершин, то его однозначно можно проассоциировать c каким-то замкнутым множеством. Но польза от этих деревьев еще и в том, чт это естественный язык описания бесконечных игр, о которых речь пойдет ниже. Еще читал о деревьях, узнал о таком интересном концепте как концы графов. Но это уже другая история.

Потом идут базовые факты из топологии польских пространств. Польскими пространствами называются полностью метризуемые сепарабельные метрические пространство. Их так назвали потому что они такие же ка Польша. Например, Польшу сепарировали один раз Россия, Пруссия и Австро-Венигрия, а потом сепарировали Сталин и Гитлер. Это тема очень важная. Есть мнение, что дескриптивная теория множеств по существу это и есть изучение категории польских пространств. Интуитивно можно себе представлять, что польские это те пространства, где работает логика 'нормального анализа'. Важнейшие нетривиальные примеры тут это пространство Кантора, бесконечные счетные произведения множества $\{0,1\}$, и пространство Бэра, бесконечные счетные произведение натуральных чисел.

Это все ноль-мерные пространства, одно компактное, а другое нет. Таким ноль-мерным пространствам Кехрис уделяет большое внимание. Тут есть однозначные признаки гомеоморфности этим двум множествам. Например, любое совершенное ноль-мерное комактно-метризуемое множество изоморфно пространству Кантора. Интересно, что очень похожая теорема есть и у Фремлина для булевых Алгебра: нетривиальная счетная алгебра без атомов изоморфна алгебре открыто-компактных подмножеств пространства Кантора. Доказательства этих утверждений очень похожи и могут быть легко получены друг-из друга. Это создает впечатление о двойственности булевых алгебр и дескриптивной теории множеств ноль-мерных пространств.

Потом идет теория множеств со свойством Бэра или почти открытых множеств. Эти множества составляют минимальную сигма-алгебру порожденную всеми открытыми и тощими множествами. При этом если факторизовать их по сигма-идеалу тощих множеств, то получится так называемая алгебра категории, которая во многом эквивалента алгебре регулярных открытых множеств или алгебре открытых областей, которая уже обсуждалась у Фремлина, и если исходное пространство Бэрово, то получается настоящая тау-алгебра.

Тут же начинаются обещенные топологические игры, которые представляют из себя бесконечные итеративные игры двух игроков с полной информацией. Вот например игра Шоки заключаются в том, что игроки поочередно выбирают непустые открытые множества так, чтобы они были вложены друг-в-друга, и первый игрок выигрывает если получается пустое пересечение. Теорема Окстоби-Шоки утверждает, что если у первого игрока нет выигрышной стратегии, то тогда пространство Бэрово. Если же у второго игрока всегда есть выигрышная стратегия, то такое пространство называется пространством Шоки, и это более сильное свойство чем Бэровость. Еще есть сильная игра Шоки, где игроки ходят открытыми множествами с отмеченными точками. И в следующей ход обязательно нужно играть множество, включающее точку предыдущего игрока. Модно доказать, что любое полное пространство является сильным пространством Шоки. Другая игра, про которую я узнал, это игра Банаха-Мазура. Эта игра играется для кого-то выбраного множества, и первый игрок выигрывает если пересечение не заключено в этом множестве, а ы остальном она аналогична игре Шоки. Есть про эту игру и ее сильный вариант и свои интересные теоремы.

В конце концов все приходи к тому, что для почти тощих и тучных множеств можно ввести нотацию очень похожую на логику кванторов: для всех значит тучное, существует значит не точное. В этой нотации теорема Улама-Куратовского в одной из своих форм просто говорит о перестановки порядка универсальных кванторов перед предикатом. А еще тут появляется форсинг: говорят что открытое множество форсит какое-то другое множество если в открытом это второе тучно. И все это выражается языком модальной логики. Вообще модальная логика это ключ к пониманию форсинга и в более широком ключе. В итоге создается впечатление, что основное достижение дескриптивной теории множеств это использования языка логики для упрощения не самых простых утверждений и выкладок в общей топологии.

Однако рано делать какие-то существенные выводы. Ведь до изучения самих иерархий мы еще не добрались, а тоько изучали необходимый инструментарий. В следующий раз хотел бы рассказать про польские группы. Но наверное, тут стоит сделать небольшую интермедию о топологических группах вообще, так как я сам хотел бы повторить этот материал.
Link2 comments|Leave a comment

Общая Топология [Sep. 9th, 2020|08:38 pm]
[Tags|, , , , , ]
[Current Mood | sleepy]

Недавно закончил повторять для себя общую топологию, поэтому решил написать этот пост, чтобы зафиксировать мысли об этой науки.

С той точки зрения, что математика это продолженная логика, общая топология — это логика пространства. А учитывая то, что любая хорошая философия полностью сводится к математики и логики, получается что общая топология это совершено общая и правильная философия пространства. И любые попытки придумать новую философию пространства, и, кстати, времени, всегда обречены на переизобретение той же самой науки — общей топологии. И это делает все попытки философов заниматься этой областью совершенно тщетным и бессмысленными. Что, кстати, отчасти делает совершенно неактуальной и физику Аристотеля. Поэтому, если вас интересует такая философия, то лучше изучайте топологию, а не Аристотеля.







Если конкретней, то в общей топологии пространство определяется путем выделения открытых и замкнутых множеств. У этой конструкции есть интересная интерпретация через теорию вычислений. В ней открытые множества соответствуют утверждениям про элементы пространства, которые можно алгоритмически проверить истинность этого утверждения для любой конкретной точки за конечное время. А замкнутые множества утверждениям которые подобным образом опровергаются. Причем, при этой модели вычислений можно запускать параллельно бесконечное количество алгоритмов. Из этой идеи легко выводятся все остальные аксиомы топологического пространства. Вроде бы это придумал Джет Неструев. Интересно подумать, как это подход ложится на остальные топологические концепции?

Говорят, что общая топология это мертвая наука. И действительно, по ядерным для нее темам почти не выходит новых статей. Поэтому молодому математику сделать карьеру занимаясь чистой общей топологией практически невозможно. Однако знать эту науку тем не менее нужно хорошо. Если сильно упрощать, то тут речь идет о расширение концепций анализа, связанных с понятием предела, на случай разных патологий, связанных с тем, что рассматриваемые пространства отличаются от действительной прямой. В самом знакомстве с этими патологиями нет большой ценности, но она есть в умении узнавать и наличие и отсутствие. И использовать знание регулярность для упрощения доказательств других интересных фактов, а знание нерегулярности ля того, чтобы не попадать в глупые ловушки. В целом хорошее знание общей топологии необходимо для изучения дифференциальной, метрической и алгебраической геометрии, дифференциальной и алгебраической же топологии, функционального анализе и теории динамических систем.

Однако прим моем недавнем погружении в эту науку я обнаружен некоторые ее разделы, которые не входят в базовый курс. Одна из этих тем связана с подробным изучением свойств Стоун-Чеховских компактификаций всяких простых пространств типа множества целых чисел. Отсюда еще получается теория странных конструкций, называемых ростами (grow). И все это дело еще как-то применяется, причем к теории Рамсея. Но я в это особо не погружался, это так сказать наметки на будущее. Еще можно попробовать изучать топологические группы в контексте топологической же динамики. Но мне лень погружаться в эти топологические группы на 100% и я разобрал только самые базовые теоремы.

Вот вам в качестве бонуса набор обзоров на книжки, которые я изучил, ознакомился или просто был наслышан, и которые я могу рекомендовать для изучения этой науки. Пойдем от простого к сложному:

обзор книг )
Link9 comments|Leave a comment

Листок: вложение Менгера-Небелинга-Понтрягина [Aug. 26th, 2020|07:33 pm]
[Tags|, , , , ]
[Current Mood | sleepy]
[Current Music |Nick Drake - Pink Moon]

https://ium.mccme.ru/postscript/s18/analiz2-list5-3-18.pdf

Прорешал за последнею пару дней этот листочек, который не решил в свое время. Помню, что как раз в том году болел ковидом и сил было очень мало. Поэтому необязательные листочки я не решал. И вообщев то время сделал крайне мало.

Тем не меняя очень хотел вернуться и все прорешать. И сам листок довольно понятный и хороший. Так как сейчас сдавать его поздно, приведу ниже в сокращенном виде свои идеи по каждой задаче. Если хотите, можно их обсудить.

тени решений )
Link14 comments|Leave a comment

Общая топология через призму теории категорий 2 [Aug. 19th, 2020|02:08 pm]
[Tags|, , , , ]
[Current Mood | sleepy]

Вот вышла обещанная книга про общую топологию c усиленным использованием теории категории. Доступно вот здесь.

И, кстати, все те, кто любит рассуждать про расизм и сексим в матетики, первым автором тут идет черная женщина. Вот твиттер авторки.

Пока я прочитал только оглавление, поэтому серьезно оценить оглавление. По оглавлению могу сказать, что там есть вещи про которые я не знаю. И поэтому скорее всего этот учебник не совсем ужасный. Хотя там нет ничего из сложной 'немецкой' категорной топологии. Правда, нахуй она нужна современным математикам, непонятно.

В целом тут представлены все темы, необходимые в учебники общей топологии, и заканчивается все теоремой Зейферта-ван Кампена. Поэтому этот учебник можно считать подготовительным перед изучением абстрактно алгебраической топологии (в противовес визуальной), то есть с усиленным использованием теории категорий. Вообще, тут судя по всему довольно серьезно разбираются соответствующие функториальные конструкций, но до начала какого-бы то ни было серьезного алгебраического (гомологического) наполнения. Поэтому, опять же, порекомендую эту книгу для подготовки тому, кто собирается глубоко заниматься абстрактной алгебраической топологией, но только как подготовку к основному курсу.
Link71 comments|Leave a comment

navigation
[ viewing | most recent entries ]