[ | Current Mood |
| | sleepy | ] |
[ | Current Music |
| | the Fugs - the Fugs | ] |

Теории Галуа.
Aвторы: Франсиc Борсу, Джордж Джанилидзе;
дата издание 2001 год
Вот я наконец-то достиг может быть и не священного Грааля, но промежуточной святыне моего паломничества. Это книга интригует уже тем, что там речь идет не о теории Галуа, а а теориях, в множественном числе. Из далека — эта книга мне казалась очень сложной, полной ядрёной теории категорий, и я долго к ней подступался. Но первые три главы оказались совсем не сложными. Некоторая концептуальная сложность была встречена мной только при чтении четвертой главы, и моя подготовка (Джонстон) помогла мне ее легко преодолеть. Пока я прочитал только четыре первые главы. В книге есть еще три главы, как мне кажется более сложные и ядрёные, и моей подготовки на них может уже не хватить. Поэтому про каждую из этих глав я планирую написать отдельный пост. Всего четыре поста по мотивам книжки. Также стоит отметить, что этот текст действительно написан в духе Гротендика. В том смысле, что там почти нет ни примеров, ни упражнений. Поэтому я в качестве упражнений придумывал и разбирал примеры
относительно длинный текст
Текст начинается с повторения классической теории Галуа. Не буду на ней долго останавливаться, потому что я уже о ней писал тут(начало тут). Главное тут то, что основная теорема теории Галуа устанавливает связность Галуа (то есть сопряжение функторов между предпорядками) между промежуточными расширениями полей K&mdashF—L расширения Галуа K—L и подгруппами группы Галуа Gal(L:K). Эта связность ограничивается на изоморфизм между упорядоченными множествами нормальных расширений и нормальных подгрупп. Ключевая идея Гротендика тут, как мне кажется, заключалась в том, что промежуточные расширения — это частный случай коммутативных $K$-алгебр. И эту связность Галуа можно расширить до большого сопряжения больших категорий профинитных K-алгебр (тут финитность понимается в смысле размерности) и профинитных множеств с действием группы Gal(L:K) (тут финитность понимается в смысле кардинальности). Другое свойство промежуточных расширений F это то, что все элементы в них являются корнями многочленов с коэффициентами в K и неповторяющимися (!) корнями в L, потому что расширение Галуа всегда алгебраическое. Элементы K-алгебр тоже можно подставлять в такие многочлены. И алгебры для которых упомянутое выше условие выполняется называются «Расшипленными». Оказывается, что эквивалентность Галуа продолжается на эквивалентность между категорией обратной к категории расщепленных алгебр и пространствами Стоуна с непрерывным действием группы Галуа. При этом эта эквивалентность категорий является конкретной двойственностью в смысле Джонстона. И шизофреническим объектом этой двойственности является поле L, которое одновременно является и K-алгеброй и множеством с действием на нем группы Галуа (изоморфизмами сохраняющими K). Причем категория пространств Стоуна с действием группы Галуа будет топосом. А значит категория расщепленных алгебр обратна к топосу.
Я придумал пару простых примеров. рассмотрим расширениe $R\mdash;C$. Тогда группа Галуа устроена как S_2. И переход между категориями осуществляется путем построения множеств морфизмов в С. Кажется, что существует всего две двухмерные расщепленные алгебры. Это R^2 c поточечными операциями и С. R^2 расщепляется, потому что элемент $(a,b)$ будет корнем многочлена f(x) = (x-a)(x - b). У R^2 eсть два морфизма алгебр $R^2 \to С$, а именно левая и правая проекция. В итоге получается множество из двух с тривиальным действием группы. Понятно, почему С расщепляется. Потому что для любого комплексного z, многочлен f(x) = (x - z)(x - \bar z) будет иметь действительные коэффициенты. Опять же есть два морфизма алгебр, тождественный и с комплексным сопряжением. И у нас получается просто множество из двух элементов с очевидным действием перестановками. Понятно, что других действие группы на множестве из двух элементов нет. Поэтому в соответствии с теоремой, что эквивалентность переводит размерность в кардинальность, действительно существует всего два класса расщепленных алгебр размерности 2 (в этом случае). Теперь рассмотрим расщепленную алгебру с бесконечной размерностью. Такая алгебра всегда будет иметь вид: множество функций из какого-то множества в X в какое-то подполе L, которые принимает только конечное число разных значений. Это обязательно. Пусть еще какие-то необязательные ограничения на функции. Например, можно взять алгебру A, cостоящую из действительных последовательностей, которые принимают только конечное число разных значений. Тогда морфизмы A \to C, это не только проекции, но и любые частичные пределы абсолютные частичные пределы. А частичных пределов существует столько-же сколько и ультрафильтров на множеств натуральных чисел. Поэтому в итоге мы получаем компактификацию Стоуна-Чеха с тривиальным действием группы Галуа! Пример, нерасщеплённой алгебры — Это например алгебра многочленов, или двухмерная алгебра с нильпотентном.
Следующая идея заключается в том, чтобы вместо расширения полей использовать расширения коммутативных колец R—S. Тут основная проблема в том, что многочлены с коэффициентами просто в кольцах уже так хорошо не работают. И нужно новое определение расщепленных алгебр. Теперь вся теория строится на взаимодействии двух функторов. Мы используем то, что любой морфизм R \to S превращает кольцо $S$ в $R$-алгебру и создает функтор расширения скаляров из $R$-алгебр в $S$-алгебр. Один функтор, состоит из композиции расширения скаляров и спектра Пирса, и отображает R-алгебру в пространство Стоуна, которое (благодаря структуре алгебры) будет расслоением над спектром Пирса кольца S. Назовём его P_S. Второй функтор сопоставляет любому расслоению над спектром Пирса кольца S множество морфизмом из него в расслоение пучка Пирса кольца S (в этой книге его называют структурным пучком S). Назовем этот функтор С_S. Назовем композиции этих функторов T. В итоге расщепленными называются R-алгебры A, на которых Т(A) изоморфно расширению скаляров. Мы еще не сказали, что такое расширение Галуа для колец, которое в этой теории называется спуском Галуа. Спуск Галуа это эффективный спуск в категории обратной к категории колец, такой что для любого пространства Стоуна X, расслоённого над спектром Пирса кольца $S$, алгебра C_S(X) будет расщепленной. Спуски Галуа всегда будут инъекциями, и эффективность обычно следует из того, что у них есть ретракт в категории R-модулей. Примером неэффективной инъекции может быть вложение целостного кольца в поле частных. Например, многочленов над полем в поле рациональных функций. Так вот, как раз это не спуск Галуа. Случай с полями тут как раз сводится к обычной теории Галуа Гротендика потому что спектр Пирса поля состоит из одной точки.
Теорема Галуа в этом контексте формируется так, что категория расщепленных алгебр эквивалента категории пучков на так называемом группоиде Галуа, который существует внутри категории пространств Стоуна. Множество объектов этого группоида — это спектр Пирса кольца S. Множество стрелок — Спектр пирса тензорного произведения S c cамим собой над R. А основные операции получаются путем отображения функтором Спектр Пирса стандартных операций связанных с тензорным произведением. Внутренние пучки тогда — это просто расслоения над спектром Пирса с дополнительной структурой, типа действие группоида, которая устроено почти также как действие группы, только определено на на всем декартовом произведение, а на той его части, где домен стрелки равен слою точки в пучке. Понятно, что в одну сторону мы переходим, используя функтор $P_S$, а в другую видимо, строим набор морфизмов пучков, уважающих действие группоида (так теперь кодируется неподвижность под действием группы). Таким образом у нас уже нет шизофренической двойственности. Но она почти есть, потому что для перехода в одну строну, мы используем глобальные сечения пучка Пирса над S, а в другую сторону его представление как расслоение. Замечу также, что внутренние пучки над группоидом будут топосом.
Примеры типа расширения полей, колец многочленов над полем, или разных видов алгебраических целых, мне кажется не очень интересными, потому что их спектры Пирса состоят из одной точки. Интересный, пример как мне кажется это алгебра фон Неймана L^\infty(...) над вероятностным пространством. Там булева алгебра идемпотентов изоморфно соответствующей сигма-алгебре по модулю множеств меры ноль. А значит спектра Пирса может быть неебически большим. Рассмотрим случай "условной вероятности", когда одна сигма-алгебра вкладывается в другую. Тогда мы получаем две алгебры фон Неймана, назовем их А и А', и отображение A -> A', типа "условное мат. ожидание". Про алгебры A и A', можно думать как про ограниченные случайны величины, с разным уровнем придельной стохастичности (уровня неопределенности). Причем, верхний порок стохастичности в A больше чем в A'. И когда мы получаем определенную информацию, то стохастичность всех случайных величин в A cнижается, и он оказываются в A'. Из этого описания понятно, что A' вкладывается A. И условное мат. ожидание будет ретракцией A'-модулей. Поэтому это вложение будет эффективным спуском. Я считаю, что смог доказать, что это вложение в действительности будет спуском Галуа. Тогда группоид Галуа это отношение эквивалентности, типа "неразличимо относительно малой сигма-алгебры" на точках спектра Пирса. Я думаю, что просто из функториальности конструкции и результатов из статьи Т. Тао и А. Джамнешана и на стрелках и на объектах группоида Галуа в этом случае можно завести вероятностные меры, а потом дезинтегрировать вероятностную меру на стрелках по классам эквивалентности. Кажется, что так мы получаем структуру измеримого группоида в духе некоммутативной геометрии и эргодической теории (просто из симметричности конструкции). В этом случае дезинтеграции меры по классам эквивалентности называется системой Хаара. Но в нашей интерпретации она может называться просто условной вероятностью.
Пучки на группоиде будут устроены как расслоения над спектром Пирса A, разделенные на непересекающиеся зоны, гомеоморфные классам эквивалентности группоида. На каждой такой зоне можно завести условную вероятность. Хотя не любое пространство Стоуна допускает хорошую вероятностную меру на себе, мы можем перенести условные вероятности на соответствующие зоны и тем самым превратить пучок в цепь Маркова. Тогда вышеописанные зоны будут соответствовать эргодическим компонентам этой цепи, или компонентам достижимости. Пространство эргодических компонент такой цепи Маркова сам будет пространством Стоуна. И все расщепленные алгебры будут устроены как непрерывные функции из таких пространств эргодических компонент в расслоениe пучка Пирса A'. Поэтому, например если, изначально мы брали действительно-значные L^\infty пространства. То их комплексные аналоги расщепляться не будут. Дальше встает вопрос, что будет если подвигать категорию, и например вместо категории колец работать прицельно в категории следовых коммутативных алгебр фон Неймана. на этот вопрос я смогу ответить прочитав, следующую главу Борсу и Джанилидзе.
|