Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2007-03-26 07:00:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: tired
Музыка:Drudkh -- Forgotten Legends
Entry tags:math, nauka

А кто собственно такой Колмогоров?
Полезное
http://www.univer.omsk.su/LGS/mem/donos.htm
http://vp-iclub.narod.ru/memo/merzlyakov/index.htm
http://arxiv.org/abs/math.HO/0507204

Про письмо Ю.И.Мерзлякова "Право на память"
в газету "Наука в Сибири", 17 февраля 1983.

Многим известно, что общество Память, прославленное
группой Гражданская Оборона
, называлось таким образом
потому что у Чивилихина был роман "Память",
написанный
весьма затейливо и совершенно нечитабельный по причине
потока сознания и модернизма.

А между тем, в сибирской академии наук действовала своя
собственная "Память",
которую организовал Мерзляков
и другие научные работники. Название статьи Мерзлякова,
надо полагать, является кивком в направлении Чивилихина,
Васильева, Емельянова и других интересных персонажей.

Колмогоров этот документ воспринял, по рассказам,
довольно параноически, ибо в нем содержалось прямое
обвинение Колмогорова в получении 100000 долларов от
враждебного СССР государства Израиль, как автору
вредного для русских учебника математики. Что подобное
обвинение было сделано без санкции КГБ, поверить трудно.
В кулуарах сибирской Памяти объясняли, что учебник
Колмогорова специально написан таким образом, что
русским его понять никак нельзя, а жидам, наоборот,
очень приятно и хорошо.

Из европейской части СССР, порядки в сибирской
математике смотрелись натуральным зоопарком, если
не сказать свинарником. Потому что где-нибудь в
Нигерии оно провинциально потому, что очень мало
ученых, денег и внимания; а в Новосибирске оно было
провинциально потому, что там в принципе не считали
нужным знакомиться с математикой вне узких областей
экспертизы. Конечно, не все, но Мерзляков
выглядел весьма типичным образчиком.

...Сейчас воспринимается как анекдот следующий факт,

переданный мне А. Д. Александровым: один из высших
руководителей Сибирского отделения того времени на
протесты и негодования по поводу статьи Ю. И. Мерзлякова
отреагировал искренним вопросом: А кто собственно такой
Колмогоров? Каково было нам узнавать об этом...

* * *

В принципе, задача математика не придумывать новые
результаты, их и так много напридумывали. Фундаментальные
ученые нужны потому, что они в состоянии просто понимать
(и просто объяснять) нужные людям вещи. В результате же
в стране, где фундаментальной науки дофига, остальные
жители понимают науку хоть сколько-нибудь. То есть
польза от ученого в том, что от него в окружающее
пространство распространяются научные знания.
А значит, хороший математик не тот, который в своей
узкой области что-то придумал, а тот, который
знает много науки и в состоянии ее транслировать,
при этом постоянно упрощая и систематизируя. Правильный
научный результат упрощает науку, а не делает
ее сложнее.

Академические педерасы не понимают этого нифига.
Для них наука застыла в 1930-х годах, в лучшем случае.
Все, что было после этого - ниибацца до чего сложно и
непонятно. И поэтому университетская программа по
математике в России не менялась с 1920-х. А вот если
из той хуйни, которой мучают студентов, удалить совсем
уж бессмысленную и никому нахуй не нужную тупую хуйню,
типа взятия интегралов, оставшимся вещам можно
обучить нормальных школьников за год-два,
либо на первом курсе. А дальше учить
людей полезному, коммутативной алгебре,
группам Ли, топологии и прочим простым
и красивым наукам, без которых математик
это не ученый, а просто гнида.

Привет



(Добавить комментарий)


[info]ded_mitya
2007-03-26 07:51 (ссылка)
> Правильный
> научный результат упрощает науку, а не делает
> ее сложнее.

О!
Вообще, целесообразность занятия наукой имено в
том и состоит, иначе это ничем не отличается от
феноменологического описания всех полученных доселе
наблюдений, т.е. занятия вроде коллекционирования.
РЕзерфорд об этом говорил, кажется.

По эту сторону океана не лучше. Ты, наверное, слышал
о курсе Electricity and magnetism по учебнику Джексона
(по читаемости Ландау-Лившиц по сравнению с ним это
Агния Барто). Блядь, хочу те три месяца своей жизни
назад.

(Ответить)


[info]do_
2007-03-26 09:00 (ссылка)
хуясе. значит. взятие интегралов это лысая и никому не нужная хуйня. А как же, блядь, вычеты и контуры? Некая общая методика существует, значит, это не какая-то лысая хуйня, а наука.

(Ответить) (Ветвь дискуссии)


[info]tiphareth
2007-03-26 09:20 (ссылка)
"Методика" на 10 минут от силы

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]spqr
2007-03-26 12:42 (ссылка)
Кстати, интегралы душою так и не принял. Мне они представлялись какими-то некрасивыми.

(Ответить) (Уровень выше)


[info]boza
2007-03-26 11:59 (ссылка)
Не помню, кому принадлежит формулировка "Если ученый не может объяснить пятилетнему ребенку над чем он сейчас работает, то он занимается ерундой" ;) Кажется, Фейнману.

(Ответить) (Ветвь дискуссии)


[info]valshooter
2007-03-26 12:51 (ссылка)
... то он шарлатан. По-моему, Воннегуту.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]ingas
2007-03-27 02:10 (ссылка)
Эйнштейну! =)

(Ответить) (Уровень выше)


[info]utenok_mu
2007-03-26 13:16 (ссылка)
Мерзляков, говорят, был хорошим лектором - я, правда, на его лекции на первом курсе не ходил, потому что и так все знал. Зато С.С. Кутателадзе был лектором отвратительным. Да что там, просто козел он был. (Если это тот С.С. Кутателадзе, т.к. их было двое, один сын другого).

(Ответить) (Ветвь дискуссии)


[info]tiphareth
2007-03-26 13:43 (ссылка)
Да, на фотографиях Мерзляков вполне симпатичный.
Но в историю науки войдет только в связи с письмом
в газету, я думаю.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]utenok_mu
2007-03-26 14:19 (ссылка)
Но ведь по факту Мерзляков не соврал - в 1980 Колмогоров действительно получил премию Вольфа в 100.000 долларов (вручается в Израиле). А так - письмо как письмо, обычная патриотическя статья в стиле газеты "Завтра".

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-26 14:29 (ссылка)
Да хуйня, конечно. По современным меркам,
так просто ничего не сказал.

Но вызвала в Москве чудовищный шухер,
типа ой-ой-ой, новый тридцать седьмой.

Это потому что в советской оптике текст
был необычайно смелый. Просто мы не привыкли
читать между строк. А в мрачные годы сталинизма
такое публиковали только уже выписав ордер
на арест.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)

Your Comments
(Анонимно)
2007-05-01 06:45 (ссылка)
Рад, что Вы входите в число моих читателей.
У меня возникло три соображения, которые могут Вам
небезынтересны.

1:
Написанное против гадости лучше ненаписанного против гадости.

2:
Academic English is broken English.

3:
Статья Мерзлякова вызвала не консультатии с ГВ, а отвращение
многих. Вам будет любопытно узнать, что привез газету в Москву
из Новосибирска на сессию АН СССР, которая раз тогда проходила,
Ю.Г. Решетняк, а распространяла в Президиуме О.А. Ладыженская.
Отповедь Л.С. Понтрягину А. Д. Александров писал тяжело больным в клинике, где лежал с неопознанным энцефалитом, принятым за рожу.
Не до консультаций с ГБ было.

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: Your Comments
[info]tiphareth
2007-05-01 20:24 (ссылка)
Спасибо! Очень интересно.
А Ладыженская это почему распространяла - ей тоже
евреи не нравились?

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: Your Comments
(Анонимно)
2007-11-22 00:39 (ссылка)
Ладыженская передала газетенку членам Президиума,
чтобы прочитали. Ладуженская и антисекмитизм --- это
нонсеннс.

(Ответить) (Уровень выше)


[info]mathreader.livejournal.com
2007-03-27 09:10 (ссылка)
Мерзляков ещё неплохие книги написал:

Основы теории групп. (с Каргаполовым)
Рациональные группы.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2007-03-28 02:06 (ссылка)
V ehtoj neplokhoj knige plotnye podmnozhestva nazyvayutsya "gustye". Kogda ya ehtot fakt osoznal, s trudom i ohueniem, ya nemedlenno vykinul knigu na pomojku. Chego i vsem zhelayu.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]finnikk.livejournal.com
2013-07-29 18:00 (ссылка)
мда, жуткое преступление !

вместо "плотные" сказатъ "густые" - это же небось против всех бурбаков и картанов пойдет - как же ж могут мерзляков с каргаполовым себе такое позволят ??

(Ответить) (Уровень выше)


[info]finnikk.livejournal.com
2013-07-29 18:05 (ссылка)
слушал последнии лекции мерзлякова по высшей алгебре в НГУ зимой 1994-го; лекции были замечательные

как-то увидел, как он расклеивает какие-то газетки в переходе в НГУ и даже набрался смелости и расспросил его - что мол за газетки да зачем

он очень интересно со мной побеседовал, расскзал про преобразования лоренца и роль пуанкаре в открытии теории относительности

запомнилась его фраза из этой беседы: "вы спросите, а где же Айнштайн ? а нет его ! патентоведишка какой-то !"
еще от него я тогда впервые узнал, что шафаревич занимался диссиденством (до этого я знал его только как автора "теории чисел", т.к в школьные годы оной интересовался)

мне, желторотому первокурснику все это было конечно, очень интересно

(Ответить) (Уровень выше)


[info]tiphareth
2007-03-26 13:49 (ссылка)
P. S. Да, сын

(Ответить) (Уровень выше)


[info]cley
2007-03-26 14:09 (ссылка)
Кутателадзе старший (тот, в честь которого названа улица) - тот был физик, а Кутателадзе младший - тот функаном занимается; лектор, кстати, действительно, отвратный (хотя мне не пришлось особо иметь дело с его курсом).

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]utenok_mu
2007-03-26 14:14 (ссылка)
Да я понял уже, это тот самый, наш Кутя. Старший Кутателадзе умер в 1986-ом.

(Ответить) (Уровень выше)


[info]colena.livejournal.com
2007-03-26 16:11 (ссылка)
on do sih por v Arxiv pishet pro to kak Kolmogorov s Alexandrovym Luzina topili

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-27 00:13 (ссылка)
Причем на ломаном английском, понимать который можно
только путем обратного перевода на русский, ибо идиомы
переведены дословно

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]mathreader.livejournal.com
2007-03-27 09:09 (ссылка)
Кстати, этот Кутателадзе ещё написал учебник по математическому английскому. Как, типа, писать статьи на английском.

(Ответить) (Уровень выше)


[info]relf.livejournal.com
2010-08-22 06:23 (ссылка)
Забавно выглядит вкупе с этой монографией:
http://www.emis.de/monographs/Kutateladze/R-E.4/index.html

(Ответить) (Уровень выше)


[info]finnikk.livejournal.com
2013-07-29 18:10 (ссылка)
хе )) в "воспоминаниях о А.Д. Александрове" Кутателадзе пишет, что оный в совершенстве владел английским и писал на нем статьи; еще он пишет, что первый разговор с Александровым них состоялся в столовке по-английски (но это потому что там присутствовцал английский "дипломат" какой-то - ездли небось, басурманы секреты сибирских ученых вынюхивать)

ну думаю, совершенство то было по советским меркам, т.е видимо, он мог более-менее грамотно писать статьи по науке
учитывая его (Александрова) биографию - не знаю, где бы он мог прилично вючитъся английскому

это какой-нибудь "Пуся" из дореволюционных еще интеллигентов мог (опятъ же, со слов Колмогорова) очень хорошо знать немецкий

(Ответить) (Уровень выше)


[info]colena.livejournal.com
2007-03-26 16:17 (ссылка)
Integraly prikladnym matematicam ochen' nuzhny.
Bez nih nikak.

Algebry Lie tozhe horosho. No integraly trogat' nel'zya.

(Ответить) (Ветвь дискуссии)


[info]tiphareth
2007-03-27 00:06 (ссылка)
Задача взятия интегралов решается любой программой символического
интегрирования гораздо эффективнее, чем любой
студент. Особенно учитывая, что программа знает,
когда какой-то интеграл не берется, и умеет
это доказывать. Зачем делать эту скучную работу
вручную, мне не ясно.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)

Вам, наверное, уже надоело на эти темы говорить, да...
[info]akater
2007-03-27 02:12 (ссылка)
Не понимаю, как можно заниматься математикой, не зная, что интеграл косинуса -- это синус плюс це. Ну хорошо, не заниматься, а... м-м-м, учиться ей. Про интеграл можно рассказать и в школе (впрочем, если я умел интегрировать, будучи, в общем-то, довольно несмышлёным дитём, то это не значит, что так сумеют делать все, кто хочет заниматься математикой), а вообще без него обойтись нельзя хотя бы потому, что если нет практики интегрирования, то это означает, что более высокая теория будет подаваться без элементарных примеров; но это неправильно.

Мне не нравится в современном нынешнем математическом РФ-образовании многое и разное. Но если человек, например, никогда не видел графика синуса, а знает, что "синус -- это такой-то ряд / такое-то бесконечное произведение / етц.", то он с синусом общаться не сможет. А без синуса плохо, разве нет? Так же и с интегралами, мне кажется. У нас, по-видимому, вообще разные взгляды на то, что именно в нынешнем российском мат. образовании не так. Единственное, в чём наши убеждения, наверное, сходятся, -- что неправильно делается вообще всё (ну, там, с точностью до множества меры нуль). А может, просто, мы по-разному смотрим на само понятие "математика". Тем не менее, суммировать дроби с разными знаменателями нам придётся до тех пор, пока, допустим, нанокомпьютеры не будут всегда и всюду делать это за нас. Так же и с интегралами, мне кажется. Когда-нибудь безнадёжно устареет всё, чем занимаются современные математики. Но исчезнуть просто так, в никуда, это всё не сможет -- ведь в преемственности во многом суть научного прогресса, да? Можно безаппеляционно сказать, что "всё, чем занимались старики, -- ерунда", но я боюсь, что такого рода высказывания могут легко увести в тупик.

Человек, обладающий фундаментальными познаниями, -- это прекрасно, это, несомненно, опора науки как цельной и небесплодной структуры. Однако скажите, неужели Вы считаете, что после Пуанкаре и фон Неймана найдётся хоть кто-то, кто будет таким же универсалом, как они, учитывая, сколь обширна (их стараниями) сейчас та область человеческой деятельности, которую называют "математикой"? Ведь ограничение рождает мастера, не так ли?

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: Вам, наверное, уже надоело на эти темы говорить, да...
[info]tiphareth
2007-03-27 02:52 (ссылка)
>Однако скажите, неужели Вы считаете, что после Пуанкаре и
>фон Неймана найдётся хоть кто-то, кто будет таким же
>универсалом, как они, учитывая, сколь обширна (их
>стараниями) сейчас та область человеческой деятельности,
>которую называют "математикой"?

Да масса народу универсалы и покруче Пуанкаре и фон Ноймана.
Яу например. А людей, которые понимают практически все,
что выкладывается в архив, хотя не пишут про все науки,
так просто десятки.

Человек, который не видит математику как целое, а видит только
какой-то убогий кусок -- вообще не ученый, а подзаборное чмо.

>Не понимаю, как можно заниматься математикой, не зная, что
>интеграл косинуса -- это синус плюс це.

Нельзя. Я был изгнан с урока математики в 8-м классе,
потому что шепотом рассказывал это соседу по парте,
такому же двоечнику, по его просьбе.

Подобные вещи нужно учить в младших классах,
есть книга Зельдовича "Высшая математика для начинающих",
доступная нормальному пятикласснику.

Речь идет не об интегралах, которые встречаются
в книжке Зельдовича для пятиклассников, а о том, что
взятие интегралов вида exp(x^{-1}) ln(ln x^2) - решение
головоломок, не имеющих отношения к научным занятиям.

Вот, собственно, линки
http://lj.rossia.org/users/tiphareth/457266.html
http://lj.rossia.org/users/tiphareth/456839.html

"Павел Сергеевич с гордостью заметил, что брать интегралы он
так и не научился, и занятие это ему так никогда и не
понадобилось. "За всю мою жизнь, - похвастал он, - мне не
пришлось никогда считать интегралы!"

>учитывая, сколь обширна (их стараниями) сейчас та область
>человеческой деятельности, которую называют "математикой"?

Изучать вещи с каждым делается все проще, ибо
люди придумывают простые способы их понимать и
рассказывать. Обширна же не "математика", а
невежество. Вот оно, действительно, расширяется
по экспоненте. А изучить вещи, чтоб понимать
90% научных статей из архива.орг, сейчас куда
проще, чем 15 лет назад - есть MathSciNet, Гугль,
Википедия.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]akater
2007-03-27 03:10 (ссылка)
> Я был изгнан с урока математики в 8-м классе,

Ну, про школу и говорить нечего. У нас считали чуть ли не преступником человека, который поинтересовался тем, как решать алгебраические уравнения седьмой степени (ясное дело, что то учителко о теореме Абеля -- Руффини имело весьма смутное представление).

> взятие интегралов вида exp(x^{-1}) ln(ln x^2) - решение
> головоломок, не имеющих отношения к научным занятиям.

Сладкие слова, гы. А я вот комбинаторные задачи такими головоломками считаю. Но их-то вроде машины сами пока не решают.

> А изучить вещи, чтоб понимать
> 90% научных статей из архива.орг, сейчас куда
> проще, чем 15 лет назад - есть MathSciNet, Гугль,
> Википедия.

Да, от возможностей современной связи дух захватывает, не поспоришь. Впрочем, разговор о всяких архивах, наверное, ещё продолжится. Спасибо за развёрнутый ответ.

(Ответить) (Уровень выше)

Re: Вам, наверное, уже надоело на эти темы говорить, да...
[info]ayudug
2007-03-27 06:11 (ссылка)
Можно поподробней что значит "видеть математику в целом"

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: Вам, наверное, уже надоело на эти темы говорить, да...
[info]tiphareth
2007-03-27 06:15 (ссылка)
Документ чрезвычайно устарелый (10 лет тому),
но какой есть

http://imperium.lenin.ru/~verbit/MATH/programma.html

Привет

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: Вам, наверное, уже надоело на эти темы говорить, да...
[info]bleubarbe
2007-03-29 23:40 (ссылка)
Прочитал программу, есть некоторые сомнения - а такая ли подготовка нужна практикующему математику? Допустим, человек занимается помехоустойчивым кодированием (например, для радиосвязи) - ему прежде всего потребуется знание собственно теории кодирования, а также мат. статистики, интегральных преобразований, алгебры логики, эргодической теории, случайных процессов, спектральной теории и т.п. Подойдет ли ему Ваша программа? Там с одной стороны, много на первый взгляд лишнего, с другой - чего-то нет вообще, а что-то слишком сокращено. Это только один из примеров, а вообще ведь профессиональные математики чем только не занимаются? Взять хотя бы ИПМ им. Келдыша, у которого профиль - механика космического полета! В связи с этим можно ли вообще говорить о преподавании "математики в целом"?

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: Вам, наверное, уже надоело на эти темы говорить, да...
[info]tiphareth
2007-04-07 17:08 (ссылка)
>Взять хотя бы ИПМ им. Келдыша, у которого профиль -
>механика космического полета!

Это не математики, а инженеры-вычислители. Совершенно
другая наука, имеющая с математикой не больше общего,
чем биология.

То же относится к кодированию - другая опять-таки наука.

Привет

(Ответить) (Уровень выше)

Re: Вам, наверное, уже надоело на эти темы говорить, да...
[info]kaledin
2007-03-28 02:08 (ссылка)
>фон Нейман

As'? Kto ehto takoj voobshche? kakoj-to ubogij amerikanskij ne pojmi kto iz zamshelykh 40kh; v sovremennoj matematike ego vliyaniya ne zamecheno.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]akater
2007-03-28 04:23 (ссылка)
Возможно, и зря я употребил его имя рядом с именем Пуанкаре. Однако если Вы считаете, Джона фон Неймана "убогим не пойми кем", то могу только сообщить, что я лично был бы рад, сумей я достичь в своей жизни хотя бы такого уровня убогости. Потом, если период деятельности некоторого человека пришёлся на годы всеевропейского кризиса в науке, то это не может, по моему скромному мнению, испортить ему научную репутацию. Так что слова про "замшелые 40-ые" мне не кажутся уместными в этом контексте, извините.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2007-03-28 22:55 (ссылка)
Tak a v chem dostizheniya-to? chto rabotal nad Manhattan Project?

Ya skhodu mogu nazvat' chelovek 30, kotorye okazali na matematiku kuda bolee zametnoe i blagotvornoe vliyanie -- vklyuchaya amerikancev, e.g. Morse.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-29 00:42 (ссылка)
Алгебры фон-Ноймана это ниибацца круто. Круче гипотез Вейля, наверное.

Привет

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2007-03-29 20:28 (ссылка)
Nu da, ya znal, chto ty ehto skazhesh'.

No po faktu, ya ne znayu ni odnogo cheloveka, kotoryj mog by vnyatno rasskazat' opredelenie, i ni odnogo cheloveka, kotoryj po delu by ikh primenil. Zhul'nichestvo ehto vse, podozrevayu ya.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-29 22:02 (ссылка)
Вот хороший образчик
http://lj.rossia.org/community/ljr_math/7367.html

Алгебры фон Ноймана имеют массу ценных применений,
например для доказательство такого замечательного факта

"гипотеза Капланского Пусть
F поле, а G - группа без кручения. Тогда
групповая алгебра FG не имеет делителей нуля."

Но не только это, конечно.

Еще фон Нойман получил несколько невероятно важных
результатов в логике, в частности придумал версию ZFC
с классами, чем позволил сформулировать теорему Геделя.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2007-03-29 22:16 (ссылка)
>Вот хороший образчик
http://lj.rossia.org/community/ljr_math/7367.html

Nu da. Interesno, da.

Mne prosto vsegda kazhetsya, chto pod vsemi takimi rezul'tatami lezhit kakaya-to konkretnaya konechnomernaya geometriya i/ili algebra, otchego i razmernosti racional'nye i t.d.; a C^*-algebry pozvolyayut poluchit' rezul'tat, tak i ne ponyav, chto na samom dele proiskhodit. V nekotorykh sluchayakh ono a posteriori tak i okazyvaetsya, tipa Jones polynomial. Delo vkusovoe, konechno.

>в частности придумал версию ZFC с классами,

A chem plokh Gilbert-Bernajs?

V lyubom sluchae, po summe rezul'tatov, Morse v 100 raz kruche (potomu chto iz teorii Morsa v kakom-to smysle proiskhodit vsya sovremennaya fizika celikom).

(Ответить) (Уровень выше)


[info]oblomov-jerusal.livejournal.com
2007-04-05 12:41 (ссылка)
Еще фон Нойман получил несколько невероятно важных результатов в логике, в частности придумал версию ZFC с классами, чем позволил сформулировать теорему Геделя. Миша, если я вам скажу, что вы логики не знаете, вы на меня сильно обидитесь? PS комментирование как пользователь livejournal.com не работает

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-04-05 13:51 (ссылка)
The problem of an adequate axiomatization of set theory was resolved implicitly about twenty years later (by Ernst Zermelo and Abraham Frankel) by way of a series of principles which allowed for the construction of all sets used in the actual practice of mathematics, but which did not explicitly exclude the possibility of the existence of sets which belong to themselves. In his doctoral thesis of 1925, von Neumann demonstrated how it was possible to exclude this possibility in two complementary ways: the axiom of foundation and the notion of class.

With this contribution of von Neumann, the axiomatic system of the theory of sets became fully satisfactory, and the next question was whether or not it was also definitive, and not subject to improvement. A strongly negative answer arrived in September of 1930 at the historical mathematical Congress of Königsberg, in which Kurt Gödel announced his first theorem of incompleteness: the usual axiomatic systems are incomplete, in the sense that they cannot prove every truth which is expressible in their language. This result was sufficiently innovative as to confound the majority of mathematicians of the time. But von Neumann, who had participated at the Congress, confirmed his fame as an instantaneous thinker, and in less than a month was able to communicate to Gödel himself an interesting consequence of his theorem: the usual axiomatic systems are unable to demonstrate their own consistency. It is precisely this consequence which has attracted the most attention, even if Gödel originally considered it only a curiosity, and had derived it independently anyway (it is for this reason that the result is called Gödel's second theorem, without mention of von Neumann.)

http://en.wikipedia.org/wiki/Von_Neumann

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]oblomov-jerusal.livejournal.com
2007-04-05 14:07 (ссылка)
‏Ну, и какая связь между теоремой Геделя и аксиоматикой теории множеств с классами? Из вашей цитаты следует, что фон Нойман отметился там и там, и что из теоремы Геделя вытекает неполнота любой непротиворечивой системы аксиом для теории множеств ( с классами или без классов).

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-04-05 14:17 (ссылка)
А в том, что система аксиом Цермело-Френкеля
содержит "схему подстановки для высказывательной
функции", которая не аксиома, а "правило
вывода", то есть счетный набор аксиом.
А теорема Геделя требует конечный набор аксиом.
И первым, кто переформулировал Цермело-Френкеля
с конечным набором аксиом, был фон-Нойман.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]oblomov-jerusal.livejournal.com
2007-04-05 14:31 (ссылка)
А теорема Геделя требует конечный набор аксиом. Не требует, Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-04-05 14:57 (ссылка)
Для любой непротиворечивой системы аксиом,
легко построить бесконечную и полную систему аксиом,
которая ее содержит

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]oblomov-jerusal.livejournal.com
2007-04-05 15:03 (ссылка)
Достаточно потребовать рекурсивности или хотя бы рекурсивной перечислимости множества аксиом.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-04-05 16:11 (ссылка)
А у Геделя разве была версия теоремы о неполноте
с рекурсивной перечислимостью множества аксиом?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]oblomov-jerusal.livejournal.com
2007-04-05 17:00 (ссылка)
Точно не знаю, но думаю да. Во-первых, если бы требовалась конечность системы аксиом, это не произвело бы такого эффекта (например, система аксиом Пеано 1-го порядка бесконечна, т.к. содержит схему индукции. Конечную систему аксиом арифметики, которая подпадает под теорему Геделя, придумал Робинсон позже), во-вторых, как я понимаю, его доказательство не стало бы проще от допущения конечности. Доказательство строилось на том, что вводилась кодировка высказываний и доказательств числами, показывалось, что в этой кодировке отношения типа "P - доказательство формулы φ" или "&psi получается из φ подстановкой выражения t вместо переменной x" становятся рекурсивными отношениями чисел, поэтому если система достаточно сильна, чтобы выражать рекурсивные функции, то можно построить формулу, которая говорит о себе, что у нее нет доказательства.

Одно допущение, которое было у Геделя и которое оказалось ненужным, это омега - непротиворечивость (если φ(0),&phi(1), ... -теоремы, то ∃n¬&phi(n) не теорема). Потом оказалось, что обычной непротиворечивости (если φ теорема то ¬φ не теорема) достаточно.

(Ответить) (Уровень выше)


[info]kaledin
2007-04-28 03:05 (ссылка)
gospod' s toboj -- arifmetika Peano ne imeet konechnogo nabora aksiom. a teorema Godel'ya rabotaet tol'ko dlya sistem, soderzhashchikh arifmetiku.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-04-28 05:48 (ссылка)
ZFC в версии фон Ноймана имеет конечную систему аксиом.
Иначе Геделю пришлось бы худо

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2007-04-28 20:27 (ссылка)
Nu voobshche-to, teorema Gedelya v iskhodnoj formulirovke ne imeet nikakogo voobshche otnosheniya ni k ZFC, ni voobshche k teorii mnozhestv. Teorema Gedelya ehto utverzhdenie pro yazyk, a ne pro model'; v nej neschetnye mnozhestva ne poyavlyayutsya.

(Ответить) (Уровень выше)


(Анонимно)
2007-03-27 12:43 (ссылка)
Миша, вы бы ещё сказали бы что умножать в школах учить не надо,
так как калькуляторы есть :-)

Я регулярно пользуюсь символьными пакетами, и скажу что ими надо тоже уметь правильно пользоваться, в смысле уметь приводить интегралы к более-менее стандартному виду, раскладывать, прикидывать как должно получиться и т.д.
Для того чтобы хорошо пользоваться пакетом необходимо уметь интегрировать руками. Это примерно как игра в шахматы с компьютером. Самое эффективное - это человек+компьютер, и человек не абы кто, а лучше гроссмейстер.

Если студент хоть когда-нибудь в будущем будет интересоваться как получить "точный" ( в смысле explicit в смысле в виде известных науке функциях) ответ в задаче, подставив в который цифирьки получаешь "точный" ответ в цифирьках, т.е. если его будут интересовать прикладные задачи, то надо уметь интегрировать, а также дифференцировать, умножать и складывать.
Такие умения+символьные пакеты+математический кругозор - вот это то что надо.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]colena.livejournal.com
2007-03-27 12:44 (ссылка)
это был мой комментарий

(Ответить) (Уровень выше)


[info]kaustikos.livejournal.com
2007-03-26 19:12 (ссылка)
про интегралы - почему на 10 минут?
потому что это все связанное с ними совсем-совсем просто или потому, что не нужно слишком углубляться в многоликие способы взятия интегралов, ибо в общем-то математику (фундаментальщику) интегралы вычислять особенно не приходится?

мне почему-то думается, что долгое топтание на месте в принципе дело вредное. то, на осознание чего на данном уровне общематематического развития требуется длительное время после скачка на новый уровень осмысливается порядком легче ergo не нужно стараться в совершенстве овладевать примитивными техниками вроде взятия интегралов, а нужно браться за новое совсем не понятное, пытаться в него въехать, совершить скачок на качественно новый уровень мышления, чтобы все содержание предыдущего уровня стало как бы тривиальным. университетское образование любит топтаться. у нас вот основным результатом курса дифференциальной геометрии были формулы Френе. Потому что топтались на них весь семестр. В результате никакого + пониманию, и формулы сами непонятно для чего повисли в воздухе. Мне мешает моя дотошность и вечное стремление разобраться в мелочах, хотя их по уму надо опускать, двигаться дальше, а они потом сами поймутся.

(Ответить) (Ветвь дискуссии)


[info]tiphareth
2007-03-27 00:11 (ссылка)

Я писал про это
http://lj.rossia.org/users/tiphareth/457266.html
http://lj.rossia.org/users/tiphareth/456839.html

Вкратце - потому, что задача решается алгоритмически,
ее решение давно реализовано во всем релевантных
программах, а людей учат не этому, а списку бессмысленных
приемов, которые работают в частных случаях, но
на практике совершенно неполезны

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]ringm.livejournal.com
2007-03-27 05:51 (ссылка)
Не знаю, знаком ли ты с ненаучной работой под громким названием The Anatomy, Life Cycle and Effects of the Phenomenologically Distributed Human Parasite M0 (http://www.reciprocality.org/Reciprocality/r1/index.html)...
Там представлен очень интересный взгляд на тему того, почему и откуда берутся вещи вроде преподавания математики через сотни интегралов, да и многое другое, о чем ты пишешь в своем дневнике со словами "давить", "суки" и "педерасы".
Не со зла все это...

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-27 05:56 (ссылка)
Да, конечно.
"Взятие интегралов" (как и любая другая
монотонная и тупая деятельность) - результат
одержимости паразитом. Убивать, однозначно.
Чтоб не заражали.

Такие дела
Миша

(Ответить) (Уровень выше)


[info]tiphareth
2007-03-27 00:22 (ссылка)
P. S. Я между прочим ни разу в жизни (до сего дня)
не слышал про "формулы Френе". Несмотря на то,
что профессионально занимаюсь дифференциальной
геометрией и имею на сей счет регалии. Подозреваю,
что половина практикующих дифференциальную
геометрию математиков и физиков тоже не слышали,
остальные слышали, но забыли, ибо нахер ненужно.
Хороший пример науки, которой обучать студентов
бессмысленно и вредно.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaustikos.livejournal.com
2007-03-27 06:55 (ссылка)
про Френе: замечу, что в вашем НМУшном курсе Казаряна (лекции лежат на mccme) упоминаются мимоходом и без траты на них времени. Чуть ли не как задачка. Для интереса поискал на архиве. Репер Френе упоминается ровно в одной публикации, а еще в паре штук речь о формализме Frenet-Serre. Не знаю, не родственник ли.

про интегралы: спасибо за ссылки. многочисленные приемы, действительно, непродуктивно сжирают кучу времени. нужно это хорошенько запомнить на случай, если когда-нибудь дорвусь до преподавания.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-27 07:36 (ссылка)
>замечу, что в вашем НМУшном курсе Казаряна

Который, на мой скромный взгляд, абсолютно чудовищен.

Полное безразличие и непонимание дифференциальной
геометрии в Москве есть сложившаяся традиция, увы.
Студентов в лучших местах учат таким образом, что
написанный сто лет назад и неспециалистами
Дубровин-Новиков-Фоменко кажется прямо-таки
откровением.

Что касается Serret, полное название формул
(как учит Википедия) Frenet-Serret formulas.
http://en.wikipedia.org/w/index.php?title=Frenet_formulas&redirect=no
К Серру никакого отношения не имеют, естественно.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaustikos.livejournal.com
2007-03-27 08:12 (ссылка)
а вот если уж. как по-вашему тогда следует учить дифф. геометрию? имею в виду книжку/книжки/статьи.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2007-03-27 08:22 (ссылка)
Вот что мне было полезно:

"Дифференциальная топология" (Милнор-Уоллес)
"Группы и алгебры Ли" (Серр)
"Группы и алгебры Ли" (Постников)
"Векторные расслоения и их применения" (Мищенко)
"Характеристические классы" (Милнор и Сташеф)
"Теория Морса" (Милнор)
"К-теория" (Атья)
"Эйнштейновы Многообразия" (Артур Бессе)
"Алгебраическая геометрия" (Гриффитс и Харрис)
"Теория Ходжа" (Клер Вуазен, по-русски нет).
"Знак и геометрический смысл кривизны" (Громов)
"Курс метрической геометрии" (Бураго, Бураго, Иванов)

Думаю, что полезен учебник Уорнера и, возможно,
Спивака, но я их не видел.

Эйнштейновы Многообразия - самая важная из списка,
ибо содержит в сжатом виде почти все полезные результаты
вплоть до середины 1980-х.

Такие дела
Миша

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaustikos.livejournal.com
2007-03-27 17:31 (ссылка)
Еще раз благодарю за разъяснение. Нужно будет посмотреть, насколько удобочитаем Бессе:-)

(Ответить) (Уровень выше)


[info]kaledin
2007-03-28 02:11 (ссылка)
>потому что у Чивилихина был роман "Память", написанный весьма затейливо и совершенно нечитабельный по причине потока сознания и модернизма.

Ya chital (po diagonali). Tam primerno polovina ehto konspirologiya na temu o tom, chto Slovo o Polku Igorevom napisal Igor', a Gumilev zhid.

No govoryat, chto Chivilikhin ehtogo ne pisal -- tipa byla gruppa avtorov, Chivilikhin, nobody iz provincii, prosto odolzhil imya.

(Ответить)


(Анонимно)
2010-08-22 19:32 (ссылка)
Н-да, форму сисек гораздо оживленнее обсуждают...

(Ответить)

+100
[info]metavoid
2012-06-28 17:56 (ссылка)
Надо побольше читать ваши архивы. У вас имеется приблизительный индекс архивов (по темам)?

(Ответить)