Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2013-04-02 21:00:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: sick
Музыка:Aluk Todolo - OCCULT ROCK
Entry tags:math, shkola

коммутативность умножения
Замечательные пидорасы
http://opiat-dvoyka.livejournal.com/62585.html
http://pryf.livejournal.com/2875762.html
http://ru-marazm.livejournal.com/3591670.html



В комментариях целый зоопарк
ополоумевших ублюдков,
которые
считают, что так и надо.

По-моему, таких учителей надо дико бить
палками, а потом увольнять с волчьим билетом.
Потому что это не учители, а говно натуральное,
выродки тупые вообще.

Преподавание по принципу "дети, понять это
нельзя, надо запомнить" не только дико скучно,
оно ко всему прочем плодит новое поколение
ублюдков, которые тоже ничего не понимают.

Привет



(Читать комментарии) - (Добавить комментарий)


[info]kaledin
2013-04-02 22:40 (ссылка)
>коммутативность умножения нужно доказать

Во-во, об том и речь.

Вот именно за такие предьявы и надо выгонять с волчьим билетом.

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-02 22:44 (ссылка)
кого?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-02 23:34 (ссылка)
Методистов, кажется. Это системное.

У ублюдков в программе умножение определяется как a + a + ... + a b раз, а потом, через год небось, отдельно доказывается коммутативность.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]illyge
2013-04-03 00:27 (ссылка)
А какие есть варианты? Какое определение умножения можно дать ребенку кроме (a+a+...+a)?

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-03 00:32 (ссылка)
Подписался на ответы.

(Ответить) (Уровень выше)


[info]qulinxao
2013-04-03 03:04 (ссылка)
прямоугольник в клеточку.

прямоугольное построение солдат.

Степанов(который STL) грит , что так у Дирихле? доказывается комутативность умножения ( до Пеано).

(Ответить) (Уровень выше)


(Анонимно)
2013-04-03 09:07 (ссылка)
учитель прав
множимое * множитель=произведение
что соответствует аксиоме Пеано
a*(b+1)=a*b+a (ещё один покупатель)
у Пеано нет аксиомы (a+1)*b=a*b+a(следствие коммутативности, не предполагаемой в контексте)

то есть индуктивный тип это второй слева операнд

тут трудности перевода с русского на язык математики

по идее "правильно" сказать примерно так:
фермер продал по 2 литра каждому из 9 чел

вероятно то что в условии это не так - фишка задачи, на которую попался ученик


(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2013-04-03 09:51 (ссылка)
даже здесь в комментах дегенераты
убейте себя немедленно, очистите этот мир от говна

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-03 10:06 (ссылка)
да вот хуй тебе в рот, чорт нерусский

(Ответить) (Уровень выше)


(Анонимно)
2013-04-03 09:56 (ссылка)
конечно так: (a+1)*b=a*b+b не аксиома Пеано

(Ответить) (Уровень выше)


[info]kaledin
2013-04-03 11:13 (ссылка)
>тут трудности перевода с русского на язык математики

Не на "язык математики", а на формальный язык аксиоматики Пеано. Кому может придти в голову детей этим мучать? придурки.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]twenty
2013-04-03 15:16 (ссылка)
http://www.globaledresources.com/resources/assets/042309_Multiplication_v2.pdf же

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]ded_mitya
2013-04-03 17:42 (ссылка)
Это пиздец. "Таблица умножения всех чисел".

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]twenty
2013-04-03 18:22 (ссылка)
Куку!
'This way of remembering multiplication facts is called "kuku" in Japanese.'

(Ответить) (Уровень выше)


[info]sergey-slavnov.livejournal.com
2013-04-03 15:45 (ссылка)
Только не надо путать язык и аксиоматику.

Но отсылки к арифметике Пеано, конечно, не канают, поскольку в начальной школе изучают сложение и умножение, а принцип индукции НЕ изучают. То есть, если уж переводить на формализованный язык, изучают другую арифметику, не Пеано.

(Ответить) (Уровень выше)


[info]tomcatkins
2013-04-04 01:07 (ссылка)
У нас один пытался так делать, в восьмом классе! То есть без вазелина вообще, индукция в виде некомментированного определения, дэзэ - доказать всю арифметику.

Причем если бы он начал спокойно нам показывать рекурсию на примере арифметики, и делал бы это на уроке информатики с заданиями на Scheme, ML или хоть Лого, было бы окей, скорее всего. Но на информатике вместо этого директор всех задрачивал каким-то стремным русским псевдокодом ручкой на бумажке.

А так все сказали "чтобля?", детям физиков и математиков прорешали и дообъяснили родители, а потом один чувак наконец-то пошутил на уроке про газовые камеры или типа того, маньяк обиделся и ушел, и вместо пришел уже какой-то совсем дурак.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-04 02:24 (ссылка)
Не, ну в восьмом классе оно может и полезно, не выйдет теоретический урок математики, выйдет практический урок по discipline and punish.

(Ответить) (Уровень выше)


[info]ded_mitya
2013-04-03 17:24 (ссылка)
> у Пеано нет аксиомы (a+1)*b=a*b+a

Тебя скобки раскрывать где учили, баран?

(Ответить) (Уровень выше)


[info]pzz
2022-06-04 21:26 (ссылка)
Через площадь. Или ее дискретный аналог: число яиц в коробке MxN

И сразу становится очевидной коммутативность: как коробку не крути, число яиц в ней не меняется.

(Ответить) (Уровень выше)


[info]aculeata
2013-04-03 01:41 (ссылка)
Определяется так (и правильно), в первом-втором классе
(зависит от программы). Все задачи на это имеют сюжет:
пять белочек спиздили по два ореха у толстомордого
дебила какого-нибудь или, кажется, алкоголика.

Через несколько уроков сообщается о переместительном
законе умножения, и он иллюстрируется примерами.
В хороших учебниках параллельно долго просто так
рисуются картинки по схеме "таблица", чтобы аналоговым
образом вошло представление о неизбежной коммутативности.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]ded_mitya
2013-04-03 01:49 (ссылка)
Я как нерусский чюрк, забыл что такое переместительный закон,
полез в словарь. Заодно нашел дивное:

http://www.ozon.ru/context/detail/id/4041883/

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kanaj
2013-04-03 02:37 (ссылка)
Да похуй что. Главное, что передает суть и облегчает жизнь до поры. Неидеальна была математическая программа в мое время, что и говорить. Но такого пиздеца, как в сабже, не было.

(Ответить) (Уровень выше)


[info]ded_mitya
2013-04-03 01:50 (ссылка)
80 страниц!

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-03 09:48 (ссылка)
Офигенно.
Бросить курить, кстати, проще.

(Ответить) (Уровень выше)


[info]twenty
2013-04-03 04:24 (ссылка)
а вот японцы определяют как-то не совсем через сложение, но порядок множимое-множитель тоже считают важным. не знаю, требуют ли харакири от перепутавших его.
http://www.globaledresources.com/resources/assets/042309_Multiplication_v2.pdf

(Ответить) (Уровень выше)


[info]gena_t
2013-04-03 08:04 (ссылка)
А не получится так, что если им слишком рано эту коммутативность ввести, они потом и матрицы начнут так перемножать? Может это преподаватели линейной алгебры потребовали? Чтобы дети с самого начала усвоили.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-03 09:55 (ссылка)
Преподаватели линейной алгебры, которые заставляют
матрицы перемножать поэлементно, сговорились с авторами
учебников? Одного знаю -- он бы плюнул им в рожу скорее.

(Ответить) (Уровень выше)


[info]kaledin
2013-04-03 12:24 (ссылка)
Ну хорошо если через несколько уроков, а не через год. А как это можно понять без картиночек, мне вообще непонятно.

(Ответить) (Уровень выше)


[info]kaledin
2013-04-03 17:44 (ссылка)
>Определяется так (и правильно)

Но по-хорошему если, нет, совершенно неправильно. Определять надо через площадь квадрата (в смысле, через картиночку). Это и понятнее, и концептуально правильно -- натуральное число это мощность конечного множества, произведение это мощность произведения, а то, что множество есть обьединение одноэлементных множеств, это обстоятельство случайное и неестественное. Выражать умножение через сложение это насилие над природой.

А как они сложение-то определяют? надеюсь через картиночку, отрезок разбитый на две части?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-03 20:31 (ссылка)
Все, что я могу тут сделать -- предположить, что существуют
дети, которых ты таким образом мог бы обучить. Не думаю,
что я таких встречала.

Дети мыслят конкретно. Размерности им чужды поначалу: многие
не умеют различить, смотрят они фильм или мультфильм (рисованный
плоский). То есть, идея, что площадь прямоугольника есть произведение
длин сторон им никак и ни разу не очевидна, и постигается подсчетом
квадратиков. А число -- это сколько груш. Что можно делать --
разбивать на квадратики и класть груши в квадратики. И это помогает
получить (исподволь) представление о площади, а не наоборот.

Была попытка учить детей аксиоматически, Гейдман рассказывал.
Все отлично пошло, но они никак не связали это потом ни с площадью,
ни с подсчетом числа груш на семи деревьев, по пяти на каждом.
Это была отдельная задача, она намного труднее решалась, чем
если б они не знали начал алгебры. Теория множеств, в частности,
идет отлично (лучше некуда), и тоже отдельно, т. е. не помогает
не то что изучить таблицу умножения, а просто два числа перемножить.

>А как они сложение-то определяют? надеюсь через картиночку,
>отрезок разбитый на две части?

Надеюсь, что нет.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-04 02:29 (ссылка)
Рисуешь прямоугольник (из клеточек конечно). Справа рисуешь его же, разбитый на строки. Снизу -- его же, разбитый на столбцы.

"Площадь" как геометрическое понятие тут вообще ни при чем.

Неужто не сработает?

>Была попытка учить детей аксиоматически

Определять через сложение это как раз и есть аксиоматически. А потом отдельно доказывать, что оно коммутативно. Вредительство.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-04 07:23 (ссылка)
>Рисуешь прямоугольник (из клеточек конечно). Справа рисуешь его же, >разбитый на строки. Снизу -- его же, разбитый на столбцы. Ну ты даешь. (1) Про эту картинку я написала с самого начала, говоря о таблицах. Но речь шла о детях, которые к тому моменту уже очень много складывали, тренировались. Иначе им вообще не будет ничего понятно. (2) Договори, пожалуйста, для себя твое определение умножения до конца. Произнеси все, что должно быть по этому поводу в учебнике. Я хочу, чтобы ты понял, что ты исходишь именно из a + a + a + ... = a * b, и мысленно попросил прощения у всех умных людей с воображением, которых ты порывался уничтожить как дураков.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-04 13:39 (ссылка)
>ты исходишь именно из a + a + a + ... = a * b

Разумеется нет. Разрезать на столбцы это для иллюстрации, что вот мол можно то же самое получить сложением. Определение -- это число клеток в прямоугольнике.

Какими словами это писать в учебнике, виднее тем людям с воображением, которые пишут учебники. Но если они будут исходить из неправильного определения, может получиться тупое начетничество. Типа того, что мы видим в исходном примере (потому что а что, правильно же -- никто ведь не доказал пока, что 9*2 = 2*9).

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-04 14:56 (ссылка)
То есть, ты упорствуешь.

(1) Определение (просила проговорить) a * b -- число клеток
в прямоугольнике со сторонами a и b? Как устроены задачи
в учебнике? Их не будет? Или условия у всех задач одинаковы:
подсчитать число клеток в прямоугольнике?

А кого, собственно, ебет, сколько клеток в этом прямоугольнике?
Зачем детям этим заниматься, если не из прилежания только?
Чем дети, которые соглашаются заниматься подсчетом числа
клеточек, лучше детей, которые соглашаются считать важным
порядок при умножении? Ведь хуже, это будущие рабы.

(2) Но их будет немного. 5*5 уже будет тяжелой работой
для ребенка, тем более, клеточки все одинаковые. Трудно
не сбиться.

Тупое начетничество всегда получается у людей без воображения,
которые исходят из вышележащих инструкций.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]sonnenfuhrer
2013-04-04 16:27 (ссылка)
Клеточки прекрасно разбиваются на группы и суммируются, просто благодаря клеточкам сразу ясно, что группы могут быть и вертикальные и горизонтальные.
Т.е. сумма - логичное следствие из определение через прямоугольник, и нет преклонения перед порядком.

Или я в чем-то не прав?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-04 16:38 (ссылка)
Если определить через подсчет клеточек, дети будут подсчитывать
клеточки. (1) Им будет непонятно, зачем это делать. (2) При
подсчете они не будут разбивать на группы, в которых одинаковое
число клеточек -- как сделали бы дети, которые уже умеют умножать --
каким образом это могло бы облегчить им задачу? (3) Надо понимать,
что дети совершенно не удивились бы, если бы сегодня подсчет числа
клеточек прямоугольника дал одно значение, а завтра другое. У них
нет понятия о законах сохранения, то есть, если клеточки две, то
вроде как да, а если их много, то хрен их знает. А уж в двух разных
прямоугольниках 4*5 вполне может быть разное число клеточек, это
не противоречит никакому их опыту.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-04 17:28 (ссылка)
Если уж фантазировать, то я бы сначала и сложение рассказал в том числе через подсчет клеточек в прямугольнике 1 x n, тем более что так коммутативность очевидна. А тогда они к клеточкам успеют привыкнуть.

И почему считать пять кучек по три вареника более естественно, чем клеточки считать? В смысле, а почему в каждой их ровно три? искусственная ситуация все равно.

В любом случае, таблица умножения сначала на два, да еще "умножение на 1 как особый случай" -- ну, какую реакцию это может вызвать у человека, хоть как-то склонного к математике, как ты думаешь?

>лучше детей, которые соглашаются считать важным порядок при умножении

Если ни один взрослый не может этого дурацкого порядка запомнить, значит он ни для чего не нужен.

А так-то что, вообще учеба в школе это рабство, кто спорит.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-04 18:31 (ссылка)
>А тогда они к клеточкам успеют привыкнуть.

Не нужно привыкать к клеточкам. Клеточки понятно,
но скучно.

>И почему считать пять кучек по три вареника более естественно, чем клеточки
>считать? В смысле, а почему в каждой их ровно три? искусственная ситуация
>все равно.

Искусственная ситуация прекрасно и нормально для детей, вообще
нет проблем. С варениками хорошо то, что это могут быть вареники,
отрезанные уши, хуи на заборе, веснушки на носу у девочки, золотые
у одного Буратино, у трех Буратино, у тридцати трех Буратино,
у ста Карабасов Барабасов. Возможен сюжет, игра (даже в советском
учебнике, где нет такой тенденции, для детей это игра все равно,
и в дореволюционном игра -- в купцов в магазине).

Можно играть и в клеточки, как Логинов. Но в этом случае клеточки
служат суррогатом для веснушек и Буратин, и идея "мета" не постигается:
число слишком долго будет только числом клеточек.

>>лучше детей, которые соглашаются считать важным порядок при умножении

>Если ни один взрослый не может этого дурацкого порядка запомнить, значит >он ни для чего не нужен.

Конечно, не нужен. Трудно придумать, что вредит больше, чем
этот порядок (как мне казалось). Ты справился. С выкрикиванием
лозунгов против вредоносных течений, что характерно.

>А так-то что, вообще учеба в школе это рабство, кто спорит.

Даже если б и так, это не значит, что надо усугублять.
А вообще не так, конечно.

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-04 20:02 (ссылка)
вы ясно можете объяснить? как и чему именно навредят клеточки?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-05 02:53 (ссылка)
Если каждого анонимчика посадить в крепенькую клеточку,
клеточки совершенно не навредят.

Если же определять умножение как число клеточек в прямоугольнике,
не будет понятно, как применить это определение. Как вычислить
8*7? Подсчитывать клеточки? Предъявить алгоритм для удобного
подсчета и доказывать, что он отвечает определению?

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-05 11:57 (ссылка)
>Если каждого анонимчика посадить в крепенькую клеточку,
>клеточки совершенно не навредят.

говна поешьте, пожалуйста

>Как вычислить
>8*7? Подсчитывать клеточки?

можно, чтобы в учебнике был шаблончик 7*8, или в тетрадке, а циферки нарисованы в клеточках. можно (но не обязательно) даже не в учебнике или тетрадке, а в программке в айпадике.

>Предъявить алгоритм для удобного
>подсчета и доказывать, что он отвечает определению?

квадратики имхо весьма хороши, как естественный способ продемонстрировать коммутативность умножения за 1 сек. именно "предъявить", но не "доказать" или "алгоритма".

в качестве счета квадратики очень хороши тоже, ничуть не хуже бегемотиков или вареников. про "кассу букв и слогов" слыхали? можно мнговенно сделать такую же, только с цифрами. в ней даже можно складывать 7*8, если не очень лень.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-05 12:52 (ссылка)
>>Если каждого анонимчика посадить в крепенькую клеточку,
>>клеточки совершенно не навредят.
>
>говна поешьте, пожалуйста

Я с ним разговариваю.

>можно, чтобы в учебнике был шаблончик 7*8, или в тетрадке, а циферки >нарисованы в клеточках. можно (но не обязательно) даже не в учебнике или >тетрадке, а в программке в айпадике.

В любом учебнике и есть много шаблончиков, в том числе похожие
на это. Посредством одного только смотрения на шаблончики нельзя
научиться, нужно делать руками.

>квадратики имхо весьма хороши, как естественный способ продемонстрировать
>коммутативность умножения за 1 сек. именно "предъявить", но не "доказать"
>или "алгоритма".

Разговор, в котором Вы приняли участие, начинался с моего
сообщения, что в хороших учебниках иллюстрации к разделам про
умножение выстраивают в таблицы. Для ненавязчивой иллюстрации
коммутативности.

Это имеет смысл делать с котиками, белочками, клеточками, пока
их не слишком много и можно охватить взглядом. 2*3 = 3*2 прекрасно,
7*8 тоже иногда рисуют, но тогда ведьм или деревянных человечков --
таких, у которых есть индивидуальность. Тогда детям смешно, что
их много, и бывает интересно убедиться, что в столбец 7, а в строку 8.

Рисовать столько клеточек вполне бессмысленно: даже Вы понимаете
это, предлагая вставлять в них цифры. Итак, в хороших учебниках
коммутативность проиллюстрирована картинкой без какого-либо
доказательства.

Учебников, в которых коммутативность доказывается, никогда не бывает
и не было.

После сообщения об иллюстративных таблицах [info]kaledin сказал,
что концептуально и вообще определять произведение a*b как число
клеточек в прямоугольнике, а ни в коем случае не через сложение.

Он не мог, однако (и до сих пор не может) предъявить алгоритм
вычисления произведений, основанный на этом определении.
Возможно, он считает, что алгоритм не должен быть основан на
этом определении -- пока это неясно. Ваше мнение на этот счет
тем более неясно: по-видимому, Вы предлагаете заняться
вандализмом -- взять учебники, стереть на картинках
бегемотиков и оставить клеточки. Или прикрыть бегемотиков цифрами.

Цензура это модно.

(Ответить) (Уровень выше) (Ветвь дискуссии)

(без темы) - (Анонимно), 2013-04-05 13:52:46

[info]kaledin
2013-04-04 20:27 (ссылка)
>Клеточки понятно, но скучно.

Кому как. Мне вареники скучнее, и всегда были. Типа, причем здесь? вы взрослые с ума сошли? А от иконок до сих пор тошнит.

>Конечно, не нужен.

Ну у тебя нет выбора вообще-то -- если ты говоришь про a + a + a, то порядок важен (по крайней мере сначала, пока явно не обьяснили, почему нет). Можно конечно врать и заметать под ковер, заради воображения -- будет ли лучше, не знаю. А можно еще сказать, что мол это математика, понять это нельзя, делай как говорят складывай бегемотиков.

Так обычно и делают.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-04 20:43 (ссылка)
>Кому как. Мне вареники скучнее, и всегда были. Типа, причем здесь? вы
>взрослые с ума сошли? А от иконок до сих пор тошнит.

Ну, тебе, может, не повезло с обучением -- если
твоим воспоминаниям о детстве можно доверять.

>>Конечно, не нужен.
>
>Ну у тебя нет выбора вообще-то -- если ты говоришь
>про a + a + a, то порядок важен

В принципе да, в учебнике какой-то порядок будет выбран, но
настаивать на нем на уроках не надо. Учитель следует порядку
учебника, дети не обязательно. В идеале (и такое чудо
случается) кто-то из детей это замечает, и тогда возникает
повод поговорить. Если же этого не происходит, тоже не страшно,
потому что рядом с 2*3 всегда вычисляется 3*2, а через пару
уроков фиксируется, что совпадение не случайно.

Меня удивляет, что ты продолжаешь упорствовать про клеточки,
как бы подразумевая, что это тебе ближе как человеку, некогда
в детстве интересовавшемуся математикой. Ты вообще-то помнишь,
как это бывает? Когда что-то интересно, с этим возишься.
Ты действительно в детстве был бы готов действовать по своему
определению -- подчитывать квадратики в прямоугольнике 8*7?

Или ты действовал бы по индукции, получая число квадратиков
в большем прямоугольнике из числа квадратиков в меньшем?
А ты знаешь, как трудно маленькому ребенку нарисовать квадрат?
Разделить прямоугольник на квадраты? Провести линию по линейке?
Ты уверен, что ты действовал в детстве именно так?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2013-04-04 22:27 (ссылка)
мне года в 4 было вполне очевидно насчет коммутативности умножения
а лет в 7 - основная теорема арифметики (про разложение на простые)
причем доказательства того и того я не знал, и даже вопросом таким
не задавался - думал, что это из серии 2*2=4

зато сидел на уроках и раскладывал трехзначные числа на простые множители,
для интереса

и еще делил в столбик, и смотрел, какие интересные периодические
последовательности получаются

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-05 02:38 (ссылка)
С большинством знакомых людей проблема в том, что
они не помнят, как изучали "умножение" и "сложение",
потому что были слишком маленькие. Это произошло
задолго до школы потому что. Это единственная версия у меня,
почему им приходит в голову, что надо считать клеточки.

(Ответить) (Уровень выше)


(Анонимно)
2013-04-04 23:54 (ссылка)
>А ты знаешь, как трудно маленькому ребенку нарисовать квадрат?
>Разделить прямоугольник на квадраты? Провести линию по линейке?
>Ты уверен, что ты действовал в детстве именно так?

вы заодно не подскажете, а за каким именно хуем ребенку понадобится _самому рисовать_ этот квадрат, или прямоугольник, или прямую линию?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-05 02:40 (ссылка)
Потому что "посмотрит на картинки и поймет" с ребенком не бывает.
Если он что-то понимает, он делает это, и наоборот.
Человек, который умеет умножать, много умножал.

(Ответить) (Уровень выше) (Ветвь дискуссии)

(без темы) - (Анонимно), 2013-04-05 12:47:43
(без темы) - [info]aculeata, 2013-04-05 12:56:39
(без темы) - (Анонимно), 2013-04-05 13:57:01

[info]kaledin
2013-04-05 00:29 (ссылка)
>Ты вообще-то помнишь, как это бывает?

На удивление -- да, почти помню!! т.е. ощущение какой-то тупой мути от "переместительного закона" помню, и если напрячься, все вспомню отчетливо.

Иначе не стал бы всего этого писать.

Про клеточки в прямоугольнике не помню, это действительно как-то всегда было очевидно. Но что квадратные уравнения научился решать, увидев картинку с дополненным квадратом -- это помню хорошо, вплоть до того, где это было на странице в книге (было мне лет 6-7 полагаю, дальше я довольно долго никакими науками не интересовался вообще).

>Ты действительно в детстве был бы готов действовать по своему определению

Это же *определение*. Это не то же самое, что алгоритм вычисления.

И да, это серьезная разница, которая базовая для любого понимания математики вообще.

Я при этом ни на чем не настаиваю; я бы вообще математику в школе сделал факультативом, а в обязательной программе оставил только то, без чего нельзя считать деньги -- как оно и было 100 лет назад. Просто чтоб детей потом хитрые банковские дяди не наебывали.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2013-04-05 00:54 (ссылка)

>На удивление -- да, почти помню!! т.е.
>ощущение какой-то тупой мути от "переместительного закона" помню

Да, феерический идиотский бред все эти правила
типа правил правописания, которые приходилось тоже заучивать
(при том, что я писал и без них вполне грамотно).
Англичанам хорошо, никаких правил правописания.

(Ответить) (Уровень выше)


[info]aculeata
2013-04-05 02:49 (ссылка)
>На удивление -- да, почти помню!! т.е. ощущение какой-то тупой мути от "переместительного закона" помню, и если напрячься, все >вспомню отчетливо.

Это воспоминание из школы, которое означает, что тебя заставляли учить правила.
У всех людей, которых заставляли учить правила, есть такие воспоминания.

Это не воспоминание о том, как ты сам изучил умножение. Нужно вспоминать
несколько раньше.

>Про клеточки в прямоугольнике не помню, это действительно как-то всегда было очевидно. Но что квадратные уравнения научился >решать, увидев картинку с дополненным квадратом -- это помню хорошо, вплоть до того, где это было на странице в книге (было мне >лет 6-7 полагаю, дальше я довольно долго никакими науками не интересовался вообще).

Застрелюсь сейчас. Ну сколько блядь можно. Ты понимаешь, что тогда ты уже
умел складывать и умножать? В 6-7 лет? И, наверное, знал про площадь?

Учебник пишется для детей, которые еще не умеют, неважно, во сколько лет.
Вспоминать нужно про то время, когда не умел и научился.

>Это же *определение*. Это не то же самое, что алгоритм вычисления.

Нужно дать определение отдельно и отдельно алгоритм вычисления?
Или что-то из этого не нужно?

>И да, это серьезная разница, которая базовая для любого понимания математики вообще.

Для любого понимания нужно возиться и получать от этого удовольствие.

>Я при этом ни на чем не настаиваю; я бы вообще математику в школе сделал факультативом,
>а в обязательной программе оставил только то, без чего нельзя считать деньги -- как
>оно и было 100 лет назад. Просто чтоб детей потом хитрые банковские дяди не наебывали.

Колмогоров думал иначе. Вероятно, он рассчитывал, что деньги дело преходящее,
а математика нет.

(Ответить) (Уровень выше) (Ветвь дискуссии)

(без темы) - [info]kaledin, 2013-04-05 11:17:20
(без темы) - [info]aculeata, 2013-04-05 12:24:36
(без темы) - [info]kaledin, 2013-04-05 21:53:31
(без темы) - [info]aculeata, 2013-04-05 23:49:55
(без темы) - [info]kaledin, 2013-04-06 00:32:54
(без темы) - [info]aculeata, 2013-04-06 03:02:44
(без темы) - [info]kaledin, 2013-04-06 11:08:37
(без темы) - [info]aculeata, 2013-04-06 12:47:40
(без темы) - [info]kaledin, 2013-04-06 22:31:04
(без темы) - [info]aculeata, 2013-04-06 23:42:55
(без темы) - [info]kaledin, 2013-04-07 00:04:02
(без темы) - [info]aculeata, 2013-04-07 00:35:23
(без темы) - [info]kaledin, 2013-04-07 00:57:04
(без темы) - [info]aculeata, 2013-04-08 07:28:50

[info]vypei_vodki
2013-04-08 20:25 (ссылка)
> т.е. ощущение какой-то тупой мути от "переместительного закона" помню

Для человека, который видел каждый божий день на обложке тетради красивую квадратную таблицу умножения, какие-либо дополнительные правила "А х Б = Б х А" нахрен не нужны.

(Ответить) (Уровень выше)


[info]bortans.livejournal.com
2013-04-09 03:19 (ссылка)
Интересно, кстати, вспомнить, как математика представлялась в детстве. Помню, как еще задолго до школы меня научили считать, но только до 20, а я смотрел на полосатый ковер на стене и пытался сосчитать все полоски. Их оказалось намного больше 20, так что пришлось самому придумывать, какие будут идти числа потом. Оказалось, что сделать это было очень просто, и удивление и радость от этого открытия и его простоты - помню до сих пор. И помню это намного ярче, чем то, что я делал в понедельник месяц назад :) Примерно тогда же решал "уравнения с x" и радовался каждый раз, когда находил, чем равен этот х, почти как раскрытие какой-то тайны.

Такие удивление и радость от новых открытий, от их понимания и их простоты и должны сопутствовать всему изучение математики (а также физики, химии и т.д.), а уж никак не запоминание и бессмысленные непонятные алгоритмы.

Но ладно, это все глубокая лирика :)

(Ответить) (Уровень выше)


[info]kaledin
2013-04-05 00:34 (ссылка)
>А ты знаешь, как трудно маленькому ребенку нарисовать квадрат?

А что, эти гады отменили тетради в клетку? В принципе, с них станется.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-05 03:00 (ссылка)
Эти гады не отменили тетради в клетку. Когда я спрашивала
про "нарисовать квадрат", я спрашивала про "нарисовать по
клеткам". При твоем определении пришлось бы очень много
рисовать. В 6 лет это невозможно, а большинство ведь
учится раньше.

Люди, которые пишут ниже про "вертикальные" и "горизонтальные",
опять же исходят из определения умножения через сложение
и не замечают этого совершенно.

(Ответить) (Уровень выше) (Ветвь дискуссии)

(без темы) - [info]aculeata, 2013-04-05 03:02:46
(без темы) - (Анонимно), 2013-04-05 03:59:09
(без темы) - [info]aculeata, 2013-04-05 13:00:28

(Анонимно)
2013-04-04 22:47 (ссылка)
>Ну у тебя нет выбора вообще-то -- если ты говоришь про a + a + a, то порядок важен

Так, в общем-то, он важен и в случае геометрического объяснения, когда мы определяем, что есть "длина" строки квадратов, а что -- количество строк (столбец). Конечно, здесь, вероятно, не возникает у детей такого острого ощущения наёбки, когда мы демонстрируем поворот в плоскости. С другой стороны, а почему младшеклассникам должно быть очевидно, что прямоугольник рассекается параллельными прямыми, проведенными через концы единичных отрезков стороны, на квадраты?

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-04 23:55 (ссылка)
>а почему младшеклассникам должно быть очевидно, что прямоугольник
>рассекается параллельными прямыми, проведенными через концы единичных
>отрезков стороны, на квадраты?

а для чего им нужно будет вообще об этом задумываться?

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-05 01:03 (ссылка)
Ну мне примерно так объясняли, я задумывался, типа. Т.е. оно было понятно (и до этого, впрочем), но непонятно было нахуя там площадь, которую не определили, на тот момент.

(Ответить) (Уровень выше)


[info]kaledin
2013-04-05 00:31 (ссылка)
>а почему младшеклассникам должно быть очевидно, что прямоугольник рассекается параллельными прямыми, проведенными через концы единичных отрезков стороны, на квадраты

Потому что младшеклассники на заморачиваются такими глупостами, как единичные отрезки, квадраты, и параллельные прямые. Речь же про произведение двух конечных множеств; из картинки все очевидно.

(Ответить) (Уровень выше) (Ветвь дискуссии)

(без темы) - (Анонимно), 2013-04-05 00:50:39
(без темы) - [info]kaledin, 2013-04-05 01:01:25

[info]tisechneg.livejournal.com
2013-04-04 16:35 (ссылка)
спасибо

(Ответить) (Уровень выше)


(Анонимно)
2013-04-03 20:55 (ссылка)
а как определять площадь? как определять отрезок?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-04 02:30 (ссылка)
Картинка на клетчатой бумаге. Не надо упаси боже ничего определять.

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-04 05:06 (ссылка)
а это реально работает?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2013-04-04 17:30 (ссылка)
Понятия не имею.

Но спрашивать надо тех, кто пробовал, а не тех, кто знает как надо основываясь на опыте поколений.

Потому что опыт поколений по преподаванию математики очевидным образом довольно ужасный.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]aculeata
2013-04-04 20:47 (ссылка)
Просто нет никакого опыта поколений. Есть хорошие учебники
и хорошие учителя/математики, подготовившие математиков, способных
подготовить других математиков. Есть плохие учебники и люди, не
сумевшие никого подготовить. Были во все времена.

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2013-04-04 23:56 (ссылка)
>нет никакого опыта поколений

>Есть плохие учебники

does not compute

(Ответить) (Уровень выше)


[info]kaledin
2013-04-05 01:02 (ссылка)
Ну да -- но с другой стороны, есть общее место что "математика это сложно, я ее не понимаю". Ну это же epic fail, в принципе.

(Ответить) (Уровень выше)


[info]ded_mitya
2013-04-04 18:43 (ссылка)
> А как они сложение-то определяют? надеюсь через картиночку,
> отрезок разбитый на две части?

Насколько я помню, начиналось со счета на палочках.

(Ответить) (Уровень выше)


[info]ded_mitya
2013-04-03 17:46 (ссылка)
Я думаю, что тут еще проще:
5 белочек спиздили по 2 ореха: 5х2
2 ореха спиздила каждая из 5 белок: 2х5

То есть даже из того, что "молоко первично" вообще ничего не
следует.

(Ответить) (Уровень выше)

)))
[info]tisechneg.livejournal.com
2013-04-11 21:31 (ссылка)
заметь простой факт что лютый батхёрт вызывает тот простой факт что надо запомнить правило из учебника.

бунт блять шестиклассников - долой правила долой дуру училку мы взрослые будем делать по своему.

эта хуйня с яблочками рассчитана на то чтобы научить _шестилеток_ умножать для начала. и каждый кто пишет про комутативность - просто выёбывается. заметь что об ОБУЧЕНИИ детей никто ни слова не сказал. все выёбываются на тему "посмотрите какой я умный я знаю что 2*3 = 3*2"

русские - необучаемы. а вся эта вонь - просто иллюстрация к этому тезису.

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: )))
[info]aculeata
2013-04-11 21:49 (ссылка)
Только полные дебилы требуют от шестилетних детей запомнить
правило из учебника. Обучить таким манером ребенка невозможно.

Впрочем, если умеете запоминать правила, проштудируйте
правила вежливости. Мы с Вами не пили на брудершафт.

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: )))
[info]tisechneg.livejournal.com
2013-04-11 22:18 (ссылка)
простите, привык что на вы переходят когда начинают хамить. осталось с допотопных времён.

то есть я так понимаю что правило про "не с глаголами" тоже идёт побоку?
и например способность запоминать у детей в 6 лет отсутствует?

вопрос не в том можно так обучить или как-то по другому обучить. вопрос в наличии самой способности запоминать.
вчера проходили - сегодня не помнит. кАрова пишет. что делать? 8 классов и пту?

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: )))
[info]aculeata
2013-04-11 22:29 (ссылка)
Есть люди (их немного), которые пишут грамотно, потому что
вспоминают правила. Конечно, ни один из них не учил этих
правил в начальной школе. У меня лет до 35 была 100% грамотность,
я не знала ни одного правила; таких, как я, много. Но, допустим,
в средних и старших классах метод "учить правила" не абсолютно
контрпродуктивен, а только в большинстве случаев.

В первых классах учить наизусть вполне бесполезно, сейчас
это понимают даже составители официальной школьной программы.
Разве что есть желание отбить у детей способность учиться
(то есть, интересоваться и думать) как можно раньше.

>вчера проходили - сегодня не помнит. кАрова пишет.

Называется дисграфия. Была у моего учителя математики. Он подготовил
колоссальное количество действующих ученых, но в слове "контрольная"
не сделал ошибки на доске, может, раз или два на моей памяти.

Бывает с людьми.

(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: )))
[info]tisechneg.livejournal.com
2013-04-12 16:13 (ссылка)
юля, вот посмотрите типичный случай. две недели истерики в интернетах и только после битья в корчах школоты по поводу злой училки и тупых методичек начинает появляться другое мнение. http://lj.rossia.org/users/tiphareth/1686023.html?thread=78116871#t78116871 - вот же. и честно, это не мои комментарии. ))

1. идиотизм - это неспособность осознать что цель обсуждаемой задачи объяснить логику умножения именно на данном уровне обучения.. и оценена она исходя из того что ученик судя по решению задачи эту логику уловил не полностью.. например на русском языке заставляют подчеркивать разными линиями подлежащее и сказуемое.. давайте и это назовем тупой бюрократической процедурой из ненавистных методичек..

а еще идиотизм - это вот так походя не имея вообще никакого отношения ни к преподаванию ни к многолетнему опыту большого количества людей которые эти методички составляют просто увидев два числа и знак умножения между ними тут же начать рассуждать "о! умножение коммутативно! ооо какие они там все дураки! ну ваащщее"

2. к огромному сожалению у большинства читателей тут оппозиционизм головного мозга) любая методичка - это проявление авторитарного режима, конформизм и зло.. и оценки по их мнению ставят за некую абсолютную истину а не за усвоение материала

и вывод

3. Если на уроке было объяснено, что это такая за штука - умножение и из чего оно состоит, а девочка в это время хлопала ушами, то три балла - это даже много.

на фоне этого вывода всё обсуждение в жж выглядит как драка олигофренов в бассейне с говном.


>> Называется дисграфия.

НЕТ
при чём тут это??

это называется "вчера учили а сегодня не помнит". "свинец это металл. иванов, почему ты пишишь что это газ? вчера же учили.." и так далее.

и вот же.
Image

и вот.

В арифметике под умножением понимают краткую запись сложения указанного количества одинаковых слагаемых. Например, запись 5*3 обозначает «сложить три пятёрки», то есть 5 + 5 + 5.

хотя конечно это тоталитарная говновикипедия и по дефолту не может быть права. как и училка. НЕ МОЖЕТ БЫТЬ УЧИЛКА ПРАВА! ТРОЯК ВЛЕПИЛА!!


(Ответить) (Уровень выше) (Ветвь дискуссии)

Re: )))
[info]aculeata
2013-04-12 17:29 (ссылка)
Возможно, здесь есть люди, которые ведут себя как-то
невоспитанно. Не могу сказать, что меня это удивляет,
да и я не приставлена следить за их поведением.

По существу же, мнение ученых, программистов и преподавателей
Вы поняли неправильно. Они намного меньше беспокоятся
о коммутативности умножения, чем о том, что после таких
уроков люди выносят из школы представление -- главное
не решить задачу, а действовать по правилам.

Я как-то оптимистично считала раньше, что после таких училок
и методичек дети выносят из школы хорошо сформировавшееся
понимание, что взрослые идиоты (и только) -- это всегда полезно
для того, чтобы стараться думать самостоятельно.

Мне возражали: не только. Дети-то, может, и выносят, говорили
мне, а вот когда они становятся взрослыми -- начинают "понимать",
что главное в школьном образовании -- действовать по правилам.

Для всех интересных областей человеческой деятельности это была
бы катастрофа. Думать абсолютно не есть исполнять алгоритм,
и чем человек благонравнее, тем хуже способен к мышлению.

Им я не верила, а Вы меня убедили. По Вашей ссылке действительно
много жертв древних методичек. Это очень печально, увы.

Но репетиторы говорят спасибо, им было бы много меньше работы,
если бы всех детей учили умные люди.

(Ответить) (Уровень выше)


(Читать комментарии) -